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Abstract 
  A “semantic frame” is bounded join-semilattice of elementary situations, with its 
maximal ideals to represent possible worlds and mapped into the complete sets of 
propositions determined by a given abstract logic (L, Cn). A frame is Humean if the 
elementary situations are separated by its possible worlds, and it is atomistic if the 
semilattice is so. One frame is the extension of another if the latter is an {0,1}-
subsemilattice of the former satisfying certain conditions discussed. 

 
 
 
1. Recapitulation of [1] 

As in [1], a “semantic frame” is to be a sextuple of the form ((L, Cn), 
(SE, R), (Z, Z0)), where (L, Cn) is an abstract logic, SE is the set of “ele-
mentary situations”, the members of R are realizations (“possible worlds”), 
Z is a function of the form R → P(L), and Z0 is the set of all true proposi-
tions of L. That sextuple has to satisfy the following nine conditions: 
 

(L1) (L, Cn)  is classic. 
 
This is to say (cf. [2], p. 44) that the consequence operation is finite, i.e. for 
any X ⊂ L: 

(L1.1) Cn X  =  ∪{Cn Y: Y ∈ Fin X}; 
 
and that there are in the language L two operations, say n(α) and d(α ,β) , 
characterized for any α, β  ∈ L as follows: 
 

(L1.2) α ∈ Cn X   iff   Cn (X, n(α))=L 
(L1.3) Cn(X, d(α,β)) = Cn(X, α) ∩ Cn(X, β). 
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Observe that being classic, the abstract logic (L, Cn) contains maximally 
consistent sets, i.e. theories complete under Cn. We denote their totality by 
Z. 

The remaining conditions are these: 
 

(R1) R ⊂ P(SE) 
(R2) R ≠ ∅ 
(R3) ∪ R ≠ SE 
(R4)  ≠ ∅ ∩ R
(R5) ∧ R1, R2 ∈ R: R1⊂ R2 ⇒ R1= R2; 

 
and setting 

V(α) = {x∈ SE: ∧ R ∈ R: (x ∈ R ⇒ α ∈ Z(R)}, 
 
where the members of V(α) are the “verifiers” of the proposition α, we 
assume: 

(Z1) Z/R/ ⊂ Z 
(Z2)  Z/R/ Z0∈
(Z3) ∧ α ∈L , R ∈R : α ∈ Z(R) ⇒ ∨ x∈R: x ∈ V(α ) . 

 
Adding further conditions we obtain semantic frames of a special 

kind. In particular we shall assume the following two. Setting, for any z ∈  
SE ,  A⊂ S E :  

(1)  K(z ,A)     iff    ∧ R∈R: z ∈  R   iff   A ⊂  R, 
we call a frame conjunctive if: 

(R6) ∧ A∈  Fin SE  ∨  z ∈  SE:  K(z ,A) .  

And we call it R-compact if: 

(R7) ∧ A⊂SE (∧B∈Fin A ∨R∈R:B⊂R)⇒∨R’∈R: A⊂R’). 

Thus only conjunctive and R-compact frames will be taken into considera-
tion henceforth.  
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2. Elementary situations factorized 
Setting r(x) = {R∈R :  x∈R},  and x 0 y  iff  r(x) ⊂  r(y) — read “x 

entails y” — we obtain a quasi-ordering (SE, 0) of elementary situations. 
Setting then x ∼r y  iff   r(x) = r(y), and factorizing SE by that 
“r-equivalence”, we arrive as usual at the partial ordering  (SE/r, ≤), here 
with /x/ ≤ /y/   iff   y 0 x. Clearly, sets of the form /x/r are blocks of mutu-
ally inseparable elementary situations. 

As we have shown in [3], the following two propositions hold for the 
factor-set SE/r: 

(1)       Under (R6), the partial ordering (SE/r, ≤) is a join-semilattice. 

And secondly: 

(2)       Under (R7), collections of the form R/r = {/x/ ∈ SE/r: x∈R}, for 
       all R ∈ R, are the maximal ideals of the semilattice SE/r. 
 
Moreover, by construction the semilattice SE/r is separated by its maximal 
ideals, i.e., for any x, y ∈ SE we have: /x/ ≠ /y/ ⇒ ∨R∈R :  /x /∈R /r  and /y/ 
∉ R/r, or conversely. 

For all z ∈ SE we also have:  

(3)  ∧ A ∈ Fin SE: /z/ = sup{/x/: x ∈ A} iff K(z, A). 
Let us show it just for the case A = {x, y}: 
(3’)  /z/ = sup {/x / ,  /y/} iff  K(z ,  {x ,  y}). 

Indeed, by definition we have: z ∈ R iff R ∈ r(z), and /x/ = /y/ iff r(x) = r(y), 
for all x, y, z ∈ SE, R ∈R. Consequently, 

(4)  The join-semilattice (SE/r, ≤) is anti-isomorphic to the 
  meet-semilattice (r/SE/, ⊂). 

Hence we get: /z/ = sup{/x/, /y/} iff r(z) = r(x) ∩ r(y). On the other hand, 
K(z, {x, y}) is to say that z ∈ R iff x, y ∈ R, for all R ∈ R; or equivalently: R 
∈ r(z) iff R ∈ r(x) . R ∈ r(y), i.e. iff R ∈ r(x) ∩ r(y). QED. 

Obviously, the sets Ω = ∩R and Λ (lambda) = SE – ∪R  are 
r-equivalence classes. In SE/r the former is the zero, and the latter is the 
unit: Ω ≤ /x/ ≤ Λ, for any x ∈ SE. Members of Ω are necessary situations, 
members of Λ are the impossible ones; the rest ∪R  – ∩R ,  if any, are con-
tingent. (“If any”, for the conditions (R1)-(R7) leave that open.) 
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3. Atomistic Frames 

For an arbitrary quasi-ordering (SE, 0) we define the notion of a 
quasi-atom (or “atomic situation”, if SE is part of a semantic frame), with 
QA to be their totality: for any x ∈ SE, 

(1)  x ∈ QA  iff  x ∉ Ω  and  ∧ y ∉ Ω : x 0 y  ⇒ y 0 x .  

Thus entailments between quasi-atoms, if any, are always reciprocal. And 
for any x ∈ SE, A ⊂ SE we set: 

(2)  At(x) = {y ∈ QA: x 0 y},  At(A) = ∪ {At(x): x ∈ A}. 

For the semantic frames to be considered here we shall stipulate 
some conditions of “atomicity”. To begin with, let us adopt some defini-
tions. 

Let SE be again an arbitrary quasi-ordering, and let x be an arbitrary 
member of it. We shall say that SE is: 

 
atomic   iff   x ∉ Ω ⇒  At(x) ≠∅; 
finitely atomic   iff   atomic and x ∉ Λ⇒  At(x) ∈ Fin QA; 
atomically determinate   iff   atomic and At(x) ⊂ R ⇒  x ∈ R, 

(3)        for any R ∈ R; 
 atomistic   iff   atomic and atomically determinate; 
 finitely atomistic   iff   finitely atomic and atomically determinate. 

 
When SE is part of a semantic frame, the same terms will be used of the 
whole frame, too. 

For the following we adopt these conditions of “atomicity”: 
 

(R8) SE is finitely atomic. 
(R9) SE is atomically determinate. 

 
Henceforth we shall consider semantic frames only which are finitely atom-
istic. 

In view of (R9) we get immediately: 

(4)  ∧ x ∈ SE: K(x, At(x)), 

as x ∈ R ⇒  At(x) ⊂ R simply by definition. Consequently, 
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(5)  ∧ R1,  R2  ∈  R :  At(R1) = At(R2)  ⇒ R1  = R2 . 

 
Let us take any x ∈  R1, then At(x) ⊂ R1 by (4); and so At(x) ⊂ R2 by hy-
pothesis. Hence x ∈  R2 by (4) again. And similarly the other way round. 

Implication (5) is condition “(A2)” stipulated in [1]. And condition 

“(A4)” there: ∧ z∈SE ∨A∈Fin QA: K(z,A) follows trivially from (4). 
(Observe, however, that in an atomically determinate frame that A need not 
be unique.) 

Let us note some relationships following directly from the definition 
of a quasi-atom (1). Firstly, 

(6)  x ∈  QA ∧ x 0 y ⇒ ∧ z: z ∉ Ω ⇒ (y 0 z ⇒ z 0 y). 

For by x ∈  QA and (1) we have: z ∉ Ω ⇒ (x 0 z ⇒ z 0 x). Thus, in view of 
z ∉ Ω, the consequent implication holds. But x 0 y and y 0 z, by supposi-
tion, so x 0 z. Hence z 0 x, in view of the foregoing. And as by supposition 
x 0 y, we get z 0 y all right. 

Secondly, 

(7)  x ∈  QA ∧ x 0 y ⇒ (y ∉ Ω ⇒ y ∈  QA), 
which is obvious in view of (6). 

Thirdly, 

(8)  x ∈  At(z)   iff   /x/ ⊂ At(z). 

Implication ⇐ is obvious. Conversely, suppose y ∈  /x/. By hypothesis x ∈  
QA and z 0 x. By supposition y 0 x, so y ∉ Ω, as x is a quasi-atom. Thus all 
three conditions in (7) have been satisfied, i.e. y ∈  QA.  And as x 0 y, again 
by supposition, we get z 0 y, by transitivity. Consequently, y ∈  At(z). 

Now let At(SE /r)  be the lattice-theoretic atoms of the partial order-
ing (SE /r ,  ≤ ,  Ω) , the set Ω obviously being its zero. We have then by (1): 

(9)  x ∈  QA   iff   /x/ ∈  At(SE /r) .  

Indeed, /x/ ∈ At(SE /r)  

iff   /x/ ≠ Ω   and   (/y/ ≤ /x/ ⇒ (/y/ = Ω   or   /x/= /y/)) 
iff   x ∉ Ω    and   (x 0 y ⇒ (y ∈ Ω   or   x ∼r y)) 
iff   x ∉ Ω   and  (y ∉ Ω  ⇒ (x 0 y  ⇒ y 0 x)) 
iff   x ∈ QA. 
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Consequently, for any x, y ∈ SE we have: 

(10)  y ∈ At(x)   iff   /y/ ∈ Atr(/x/). 

Indeed, y ∈ At(x) iff   y ∈ QA and x 0 y 
   iff   /y/ ∈ At (SE/r)   and / y/ ≤  /x/, by (9) 
   iff   /y/ ∈ Atr( /x / ) .  
(By “Atr(/x /)” we mean, of course, the collection of r-blocks {/y/ ∈ At 
(SE/r): / y/ ≤ /x/}.) 

The following propositions hold: 

(11)   Under (R8), the partial ordering (SE/r, ≤, Ω, Λ) is finitely atomic. 
Indeed, “atomic” predicated of a bounded partial ordering means that each 
of its non-zero elements contains some atoms: x ∉ Ω ⇒ Atr( /x / )  ≠ ∅ ;  
and “finitely” means here that each non-unit element contains only a finite 
number of them: /x/ ≠ Λ ⇒ Atr( /x / )  ∈  Fin At(SE/r). As for the former, 
assume the antecedent: /x/ ≠ Ω. Thus x ∉ Ω. Hence, by (R8), At(x)  ≠ ∅ ;  
i .e . ,  x 0 y, for some y ∈ QA. In view of (9), this is equivalent to: / y/ ≤ /x/, 
for some /y/ ∈ At(SE/r). Consequently, Atr(/x/) ≠ ∅ . And as for the latter, 
assume the antecedent: /x/ ≠ Λ. Thus x ∉ Λ, so At(x)  ∈  Fin QA, by (R8) 
again. Hence we can set: At(x) = {y1, …, yn}, for some natural number n. 
By (10) this means that Atr(/x / )  = {/y1/, …, /yn/}, i.e. that it is finite. 

Moreover, we have 
(12)   Under (R8) and (R9), SE/r is atomistic as a join-semilattice. 
Indeed, “atomistic” as predicated of a join-semilattice means that for every 
/x/ there is an A ⊂ At(SE/r) such that /x/ = sup A. And in fact, substituting 
A/At(x) in (2.3) we get, as under (R8) the set At(x) is finite: 
 

K(x ,  At(x))    iff   /x /  = sup {/y / :  y   ∈ At (x)}.  
 
In view of (R9) and (3.4) the left-hand part of that equivalence is a thesis, 
so the other one is, too. Hence, by (10), we get: /x/ = sup {/y/: y  ∈ At (x)}, 
which is just what is wanted. 

In [3], p. 308, we have pointed out that a join-semilattice which is 
both atomistic and finitely atomic is a lattice, the meet of two elements 
being the supremum of the intersection of their respective sets of atoms. 
Thus we get eventually: 
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 Under (R8) and (R9), the partial ordering (SE/r, ≤) is a lattice, both 
(13) atomistic and finitely atomic, with the join as in (2.3’), and the 
 meet /x/ ∧ /y/ = sup (Atr(/x/) ∩ Atr (/y/)), for any x, y ∈ SE. 

 
Observe that in view of (9) the atoms of the lattice SE/r coincide with 

r-blocks of quasi-atoms of the quasi-ordering SE. I.e., 
 

At(SE /r)  = {/x/ ∈ SE/r: x ∈ QA} = QA/r. 
 
 
4. Humean Frames 

The generality of this investigation will be severely curtailed hence-
forth, for we shall limit it to one particularly simple and perspicuous kind 
of semantic frame only. Its ontology (SE, R) is characterized by the condi-
tion: 

(H)   ∧ x, y ∈ SE:  r(x) = r(y) ⇒ x = y. 

 
Thus any two distinct elementary situations are separable by some realiza-
tion, though not necessarily both ways. For if x 0 y, then — as shown in 
diagram 1 — there is no R∈R  to contain x without containing also y. Only 
reciprocal entailments are ruled out. 
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stated thus: whatever is distinct, is separable. In formulations varying just 
slightly, this principle is explicitly invoked at least fourteen times (cf. [4], 
pp. 10,18, 24, 27, 36, 40, 54, 66, 79-80, 233, 259, 260, 632, 643). Oddly 
enough, despite its paramount position in the “Treatise”, Hume’s remark-
able principle went almost unnoticed in the vast literature on him. (His 
famous doctrine that there is no necessary connexion between cause and 
effect appears as a straightforward corollary of that principle: the cause is 
distinct from the effect, so the latter is separable from the former.) Let us 
just point out here that in Selby-Bigge’s otherwise excellent index of sub-
jects, there is no entry on “separability”. And in the entry “perception” only 
separability of perceptions from the mind is taken into account, the crucial 
one between them mutually is not even mentioned. 

In Hume the quantifier “whatever” refers in his principle to percep-
tions (i.e. impressions or ideas): whatever perceptions are distinct, are sepa-
rable. They are his elementary situations — his interpretation for the uni-
verse of discourse SE. And his realizations, i.e. his interpretation for the 
members of R, are clearly minds, defined by him (p. 207) as “heaps or col-
lections of different perceptions”. Stepping beyond Hume’s text, but not 
beyond his system, we have merely to add that those “heaps or collections” 
should be maximal possible ones; in particular no such heap should be a 
proper part of another. As realizations, Humean minds are complete; and 
obviously one mind cannot be part of another. 

In a Humean frame all blocks of the partition SE/r are trivial: for any 
x ∈ SE, 
(1)  /x/ = {x};  i.e.,  SE/r = SE/=. 

In particular, Ω and Λ are unit sets then: Ω={o}, Λ={λ}, for some definite 
o, λ ∈ SE.  There are thus in SE just one elementary situation that is neces-
sary, and one that is impossible. 

Moreover, in a Humean frame the structure (SE, 0) is a partial order-
ing, and the relation K(x, A) is a function from Fin SE to SE: x is the su-
premum of the finite set A under the partial ordering 0. 
 

Consequently, SE is isomorphic to its partition SE/r: 

(2)  (SE, 0)  ≅   (SE/r ,  ≥) .  
Thus, under all the foregoing conditions (R1)-(R9), we get the following 
proposition: 
 
    In a Humean frame, the structure (SE, 0 , o , λ) is a bounded lattice 
(3)    which is both atomistic and finitely atomic. And R are its maximal 
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    ideals. 
 
I.e., for any x, y ∈ SE there is an z ∈ SE such that z = x ∨ y (namely iff K(z, 
{x,y})), and an u ∈ SE such that u = x ∧ y (namely iff K(u, A), where A = 
At(x) ∩ At(y) , ). 
 
 
5. Atomic Extensions 

Let F, F’ be two arbitrary semantic frames: 
F = ((L, Cn), (SE, R), (Z, Z0)) 
F’ = ((L’, Cn’), (SE’, R’), (Z’, Z0’)). 

In [3] we considered F’ to be an extension of F if the following held: Cn, Z0 
are just restrictions of Cn’, Z0’ to L; the function Z’ is subordinate to Z; and 
the ontology remains constant: SE = SE’, and R = R’. Here, however, we 
take an opposite stance. 

Let F, F’ be now two Humean frames, both atomistic and finitely 
atomic; and let QA, QA’ be their respective sets of atoms. We shall say that 
the frame F’ is an atomic extension of the frame F if its logic stays the 
same: L’ = L, Cn’ = Cn; its semantics is such that Z’/R’/ = Z/R/, Z0’ = Z0; 
its ontology is such that QA’ = (QA – X) ∪ Y, where X ⊂ QA, Y ⊂ QA, with 
X possibly empty; but if it is not, then neither is Y; and for an arbitrary x ∈ 
QA we have one of the following three cases: 
 

either a)   x ∈ QA’;  
or b)   x ∉ QA’, but  SE’, and ∨ A’∈ Fin QA’: x = su A’;  x ∈  p 
or c)   x ∉ SE’, but ∨ A’ ⊂ QA’ ∧ α ∈ L: x ∈ V(α) iff ∧ x’ ∈ 
         A’: x’ ∈ V’(α), 

 
the functions V, V’ defined within their respective frames as in § 1. 

Observe that in case (c) the set of A’ takes in frame F’ the place 
which was held in frame F by the atom x; and that the identity of place is 
determined here semantically by the totality of propositions verified by 
them: 
 

{α ∈ L: x ∈ V(α)} = {α ∈ L’: x’ ∈ V’(α), for some x’ ∈ A’}. 
 
In this sense, the element x and the set A’ may be said to be “semantically 
equivalent”. 
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Observe also that in the transition from the frame F to a frame F’ the 
element x, i.e. an atom of F, behaves as follows: 

in case (a) x stays an atom also in F’; 
in case (b) x ceases in F’ to be an atom, but reappears there as a 
     compound; 
in case (c) x disappears in F’ altogether, but is replaced by a 
     semantically equivalent set of atoms A’. 

 
 
6. Adjunctive Extensions 

Our abstract characterization of atomic extensions is rather opaque. 
To make it more perspicuous let us adopt two more assumptions. Firstly, 
we assume that, as in [1]: 
 

(R10) Both F and F’ are dimensionally determined. 
 
This is to say that the respective sets of atoms QA and QA’ are both parti-
tioned into collections D and D’ of logical dimensions, i.e. so that each of 
the blocks is a set of atoms which is both exclusive and transverse. By the 
former we mean that all atoms of one dimension exclude each other: x ≠ y 
⇒ (x ∈ R ⇒ y ∉ R), for any x, y ∈ D, and D ∈ D, and any R ∈ R; and simi-
larly for the frame F’. By the latter we mean that each dimension intersects 
all realization of its frame: D ∩ R = ∅, for any D ∈ D, and any R ∈ R. 
Immediately it follows that D ∩ R is always a unit set: D ∩ R = {x}, for 
some x ∈ QA. 

Secondly, and just for the sake of formal simplicity, let us assume 
that the two Humean frames in question are uniquely atomistic. This is to 
say (cf. [3], pp. 307-310) that on top of being atomistic the semilattices SE 
and SE’ are such that for any x ∈ SE (and SE’), and any A ⊂ QA (and QA’) 
we have: 
 

x ≠ λ ⇒ (x = sup A ⇒ A = At(x)). 
 
Thus we assume: 
 

(R11) Both F and F’ are uniquely atomistic. 
 
(It is a separate question how to obtain unique atomicity for the partial or-
dering SE/r via conditions stipulated directly on the quasi-ordering SE it-
self.) 
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Let us note — and this will make (R11) somewhat less arbitrary — 
that for finitely atomistic lattices being uniquely atomistic is equivalent to 
being conditionally distributive, i.e. such that x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), 
provided y ∨ z ≠λ; cf. [3], p. 310. 
 Case (a) will be called adjunctive extension. Under (R10) it consists 
in QA’ differing from QA only in a new dimension D’ having been ad-
joined to it: QA’ = QA ∪ D’, with QA ∩ D’ = ∅. In other words: D = D’ – 
{D’}. 

What is then the relationship between the two respective ontologies 
(SE, R) and (SE’, R’)? 

As in group theory (cf. e.g. [5]), we shall call, for any A, B ⊂ SE,  A • 
B = {x ∨ y ∈ SE: x ∈ A, y ∈ B} the product of subsets. We have then: 

(1)  SE’ = SE • (D’ ∪ {o}) = SE • D’ ∪ SE 

as SE • {o} = SE, and the product of subsets is easily seen to be distributive 
over their unions: A • (B ∪ C) = A • B ∪ A • C. 

Or conversely, 

(2)  SE = {x ∈  SE’: x =  λ   or   y ∉ At(x),  for  any  y ∈ D’}. 

Thus SE  ⊂ SE’. Moreover: 
  If a Humean frame F’ is an adjunctive extension of the Humean 
(3)  frame F, then under (R11)  the set SE is a {0,1}-sublattice 
  of SE’. 
 
Indeed, take any x, y ∈ SE’. Supposing both are in SE, consider their join z 
= x ∨ y. If z  = λ , then obviously z ∈ SE. And if z ≠ λ , then by (R11) — cf. 
[3], p. 309 — we have the identity: At(x ∨ y) = At(x) ∪ At(y). As x, y ∈ SE, 
no atom of D’ is contained in either At(x), or At(y). Hence none is in their 
unions either. Thus x  ∨  y ∈ SE, by (2). QED. 

Now setting x = sup (At(x’) – D’), it might seem that the mapping e: 
SE’ → SE such that 

⎩
⎨
⎧

∉
∈

=
SExx
SExx

xe
'   if   ,
'  if   ,'

)'(

 
is an endomorphism. It is readily seen, however, this it is not so. For take 
any x’, y’ ∈ SE’ such that x’ = x ∨ z1, y’ = y ∨ z2, for some x, y ∈ SE such 
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that x ∨ y ≠ λ ; and for some z1, z2 ∈ D’ such that z1 ≠ z2. Then, on the one 
hand, we have: 

e(x’  ∨ y’) =  e(λ)  = λ .  
But, on the other: 

e(x’)  ∨ e(y’)  = sup(At(x’)  – D’)  ∨ sup(At(y’)  – D’)  
   = sup((At(x)  ∪  At(z1))  – D’)  ∨ sup((At(y)  ∪  At(z2))  – D’)  
   = sup At(x)  ∨ sup At(y)  
   = x  ∨ y  ≠ λ .  
 
Thus the mapping e as defined is not a homomorphism! 
 
 
7. Ideals under Adjunctive Extension 

What about the relationship between R and R’? This is an intricate 
question, in need of a separate study, as under the mapping mentioned the 
sublattice SE = e/SE’/ is not an homomorphic image of the lattice SE’. At 
any rate, however, all the member-sets of R and R’, respectively, have to be 
maximal ideals of the respective lattices SE and SE’. Let us see some of the 
obstacles when trying to obtain them from one another. 

Starting from R, we take an arbitrary R ∈ R, i.e. a definite maximal 
ideal of SE. And we fix one definite atom t ∈ D’. Thus we get a set-up as 
shown in diagram 2, all the relevant inclusions readily to be seen there. 
(The inner oval represents the set QA’ = QA ∪  D’, of course.) Somehow 
the couple (R, t) should determine a definite maximal ideal R’ of SE’. 
 

 
 

Diagram 2 
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The following construction comes immediately to mind. Consider the 
product R •{t} = {x ∨ t: x ∈ R}. Some members of R, however, may be 
incompatible in SE’ with the new atom t. Let their totality, possibly empty, 
be the set X(R, t) = {x ∈ R: x ∨ t = λ}. Clearly that set has to be withdrawn 
from the maximal ideal of SE’ under construction. (Observe that the differ-
ence R – X(R, t) is never empty, as always o ∈ R and o ∉ X(R, t).) On the 
other hand, that ideal should contain all joins of the form x ∨ t, with x ∈ R, 
except when x ∨ t  = λ; i.e. it should include the set R •{t} – Λ. So consider 
the union: 
 

Y = (R – X(R, t)) ∪ (R • {t} – Λ), 
 

Is it an ideal of SE’? Not necessarily. It is easy to check, though somewhat 
tedious, that Y is closed downwards: if x ∈ Y, then y ≤ x implies y ∈ Y, for 
any y ∈ SE’. However, from x’, y’ ∈ Y it does not follow that x’ ∨ y’ is in Y 
too. For suppose that x’ belongs in Y to its first component, any y’ to the 
second. Then we have: x’ ∈ R, and y’ = y ∨ t, for some y ∈ R. Clearly, x ∨ y 
≠ λ, but how are we to tell that the same goes for (x ∨ y) ∨ t, or even for 
x ∨ t? 
 
 
8. A Special Case 

Now let us consider a rather special case of adjunctive extension, 
where the extending dimension D’ is orthogonal to the sublattice SE if 
bereft of its unit λ. (Subsets A, B of a bounded lattice we call “orthogonal” 
to each other — cf. [3], p. 27 — if for every x ∈ A, y ∈ B: x ∨ y ≠ λ, x ∧ y = 
o.) Thus we set: 

(*)  ∧ x ∈ SE – {λ} ∧ t ∈ D’: x ∨ t ≠ λ, 

the condition x ∧ y = o being satisfied automatically as D’ ∩ QA = ∅. 
Then evidently X(R, t) = ∅, and λ ∉ R • {t}. Consequently, 

(1)  Under (*), Y = R ∪ R •{t}. 
 
Moreover, the product of subsets R •{t} is then isomorphic to the direct 
product: 

(2)  Under (*), R •{t} ≅ R ×{t}, 
and so also to R itself: 
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(3)  Under (*), R •{t} ≈ R. 
Clearly, the same holds of the whole lattice SE, i.e., 

(4)  Under (*), SE ≅ SE •{t}, 

the map e: SE’ → SE as defined above establishing the one-to-one corre-
spondence here. 

Eventually we obtain a set-up as shown in diagram 3, where 
 

SE ∪ SE •{t} = SE •{o, t} ≅ SE × {o, t} = SE × {o} ∪ SE × {t}, 
 
with “t” treated as a constant here. Turning it into a variable we get: 

(5)       SE’ = ∪{SE ∪ SE • {t}: t ∈ D’} = SE ∪ ∪{SE • {t}: t ∈ D’}. 

Observe that in the last formula the members of the union are all disjoint 

except for λ which they have 

 

∗ 

SE 

SE•{t} 

λ 

  
For a t ∈ D’ let us call the pr
with SE. Clearly, any two suc
t’ ∈ D’ we have: 

(5)  t ≠ t’ ⇒ SE • {t}

For let the two relevant subla
∨ t, and x’ = y ∨ t’, for some x
(x ∨ t) ∨ (y ∨ t’) = (x ∨ y) ∨ (t

 

x ∨ t 
all in common. 

o 
∗ 

t ∗ 

R 

R • {t} 

e 

x 
∗ 

∗ 

Diagram 3 

oduct SE • {t} a sublattice of SE’ associated 
h sublattices are disjoint up to λ, i.e. for any t, 

 ∩ SE • {t’} = {λ}. 

ttices be T and T’. If  x’ ∈ T ∩ T’, then x’ = x 
, y ∈ SE. Thus, adding sidewise, we get: x’ = 

 ∨ t’) = (x ∨ y) ∨ λ = λ. 
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Moreover, under (*) all the sublattices associated with SE are iso-
morphic, of course, as shown in diagram 4 below. 

 

SE ∗ ∗ 

o 
∗ 

e e 
t 

I • {t’} 

I 

I • {t} 

e 
e 

SE • {t} SE • {t’} 

Diagram 4 

t’ 

 
Clearly, 
(8)  Every ideal of SE is also an ideal of SE’. 

For let I be an ideal of SE, and take an arbitrary y’ ∈ SE’. If x ∈ I, and 
y’ ≤ x, then y’ ∈ SE — as otherwise we should have t ∈ At(x), a contradic-
tion. So y’ ∈ I. And the closure against joins is obvious. 

Now let SE’ be an adjunctive extension of SE. Then the following 
holds: 

(9)  If I’ is a proper ideal of SE’ then I = I’ ∩ SE is one of SE. 

The thesis means: x, y ∈ I’ ∩ SE iff x ∨ y ∈ I’ ∩ SE, for any x, y ∈ SE’. 
Implication ⇒ holds for every sublattice of SE’, as then, by antecedent and 
I’ being an ideal, we have: x ∨ y ∈ I’; and x ∨ y ∈ SE, as SE is a sublattice 
of SE’. Conversely, we get in the same way: x, y ∈ I’. And as x ∨ y ∈ SE by 
antecedent, we have: t ∉ At(x ∨ y). Hence t ∉ At(x), t ∉ At(y). So x, y ∈ SE. 
Finally, as I’ is proper, λ∉ I’; so λ∉ I. 

Next let us prove a lemma: 

  Under (*) the dimension D’ being orthogonal to SE, and 
(10)  th SE finitely atomic (R8) and uniquely atomistic (R11): wi
  ∧ x, y ∈ SE –Λ  ∧ t ∈ D’: x ∨ t = y ∨ t ⇒ x = y. 
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For suppose: x, y ∈ SE; x, y ≠ λ; x ∨ t = y ∨ t. Then x ∨ t, y ∨ t ≠ λ, by (*) 
and the second. But At(x ∨ t) = At(y ∨ t) by the third, so At(x) ∪ {t} = At(y) 
∪ {t}, by R8 and R11, cf. [3], p. 309. Hence At(x) = At(y) by algebra of 
sets, as t ∉ At(x), At(y). Thus x = y, as SE is atomistic by R11, cf. [3], 
p. 308. 

Lemma (10) yields a theorem, easy to see, tedious to prove: 
 
  Under (*), R8, and R11; for any I ⊂ SE, and any t ∈ D’: 
(11)  if I is a proper ideal of SE, then I ∪ I • {t} is one of SE’. 
 
Set T = I • {t}, for short. Then we have to show that for any x’, y’ ∈ SE’: 
x’, y’ ∈ I ∪ T iff x’ ∨ y’ ∈ I ∪ T. Observe, to begin with, that λ ∉ T, as I is 
proper and (*) has been assumed. 

For implication ⇒ assume the antecedent. Then we have four cases 
at hand: (x’, y’ ∈ I) or (x’ ∈ I, y’ ∈ T) or (x’ ∈ T, y’ ∈ I) or (x’, y’ ∈ T). In 
case one, x’ ∨ y’ ∈ I trivially, as by (8) I is also an ideal of SE’. In case two, 
y’= y ∨ t, for some y ∈ I. Thus x’ ∨ y’ = (x’ ∨ y’) ∨ t; and as both x’ and y 
are in I, we get: x’ ∨ y ∈ I. Consequently, x’ ∨ y’ ∈ T. Case three is sym-
metric to the foregoing, and in case four the reasoning is essentially the 
same. Thus in all four cases we have: x’ ∨ y’ ∈ I ∪ T . 

For implication ⇐ assume again its antecedent. Then either x’ ∨ y’ ∈ 
I, or x’ ∨ y’ ∈ T. In case one we get x’, y’ ∈ I immediately, as by (8) the set 
I is an ideal also of SE’. In case two we have: x’ ∨ y’ = z ∨ t, for some z ∈ I. 
So the atom t is contained in the join x’ ∨ y’, which means by unique atom-
icity (R11) that it must be contained in either x’ or y’. Therefore, x’ ∉ SE, 
or y’ ∉ SE. Both are symmetric, so let us assume the former. Then we have: 
x’ = x ∨ t and (y’∈ SE or y’ = y ∨ t), for some x, y ∈ SE. Take the first dis-
junct: x’ = x ∨ t, and y’∈ SE. Thus x’ ∨ y’ = (x ∨ y’) ∨ t. Consequently, z ∨ t 
= (x ∨ y’) ∨ t, with both z ∈ SE, x ∨ y’∈ SE. (The latter as x, y’ ∈ SE, and 
SE is a lattice.) So the conditions of lemma (10) have been satisfied, and 
we obtain therefrom: z = x ∨ y’ (!). Thus x, y’ ∈ I, as by assumption z ∈ I, 
and I is an ideal. But if x ∈ I, then x ∨ t ∈ T. Hence x’, y’ ∈ I ∪ T. 

Under the second disjunct the reasoning is essentially the same again. 
(As x’ = x ∨ t, y’ = y ∨ t, we get: (x ∨ y) ∨ t = z ∨ t. Hence x ∨ y = z by (10), 
yielding x, y ∈ I. So x’, y’ ∈ T.) QED. 

In view of (5) and (6) we have clearly: 
 
  Every proper ideal I’ of SE’ is included in a sublattice 
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(12)  of the form SE ∪ SE • {t}, with t ∈ D’. If I’ ⊄ SE, I’ is 
  included in just one; otherwise in all. 
 

This and lemma (11) suggest the following proposition on the rela-
tionship between the collections R and R’ of the two frames in question: 
 
Under (*), let the lattice SE’ be an adjunctive extension of the dimension-
ally determinate Humean lattice SE. Then for any R’ ⊂ SE’: 

  R’∈ R’ iff ∨  R ∈ R ∨  t ∈ D’: R’ = R ∪ R • {t}, 
(13)  where R and R’ are the maximal ideals of SE and of SE’, 
  respectively. 
 
Suppose R’ ∈ R’. Then by (9) the set R = R’ ∩ SE is a proper ideal of SE. 
So consider any other proper ideal I of SE such that R ⊂ I. Obviously R • 
{t} ⊂ I • {t}, for any t ∈ D’. But R is isomorphic to R • {t} by (3), and 
consequently R • {t} is a maximal ideal of the associated sublattice SEt = 
SE •{t}. As I •{t} ⊂ SEt, and I is a proper ideal of SE, we see in view of (4) 
that I • {t} is a proper ideal of SEt. Hence I = R, i.e. R is maximal in SE. 
 

Conversely, suppose R ∈ R, and take any t ∈ D’. By (11), the set R’ 
= R ∪ R • {t} is a proper ideal of the lattice SE’ = SE ∪ SE • D’. Hence by 
(12) that ideal is included in the sublattice SE ∪ SE •{t}; and in no other 
one of that form. Consider now any ideal I’ of SE’, suppose R’ ⊂ I’, and 
take an arbitrary z ∈ I’. Then either z ∈ SE, or z = y ∨ t, for some y ∈ SE, t 
∈ D’. 

Suppose z ∈ SE. Then x ∨ z ≠ λ, for any x ∈ R, as both are in I’, and 
I’ is proper. This means in turn that there is in R no “impedance” to z (cf. 
[1], proposition 5.1), and so z ∈ R! 

Thus suppose z = y ∨ t. By (12), I’ is included in the sublattice SE ∪ 
SE •{t}; and so t must be the same atom of D’ as before. Should z lie out-
side of R’, its component y would have to lie outside of R (cf. Diagram 3). 
But y is compatible with every member of R, as otherwise I’ could not be 
proper, containing both y and R. Hence y lies inside of R, and so z ∈ R’! 

I.e., on both counts we get: R’ ∈ R’. 
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Note: Epistemologically, the adjunctive extension of a frame F into another 
F’  means  revealing a new  aspect of reality suppressed in F, and not 
yet reflected in the language of F’. For e/D’/ = {o}. 
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