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COMPLETENESS AND REPRESENTATION THEOREM FOR

EPISTEMIC STATES IN FIRST-ORDER PREDICATE

CALCULUS

Serge LAPIERRE, François LEPAGE

Abstract
  The aim of this paper is to present a strongly complete first order functional
predicate calculus generalized to models containing not only ordinary classical
total functions but also arbitrary partial functions. The completeness proof fol-
lows Henkin’s approach, but instead of using maximally consistent sets, we de-
fine saturated deductively closed consistent sets (SDCCS). This provides not
only a completeness theorem but a representation theorem:  any SDCCS defines
a canonical model which determine a unique partial value for every predicate
symbol and any function symbol. Any SDCCS can thus be interpreted as an
epistemic state.

1. Introduction
The aim of this paper is to present a proof à la Henkin [1] of

strong completeness for functional predicate calculus with identity gen-
eralized to models containing not only total functions but arbitrary par-
tial functions as well.

These partial functions are arbitrary because the domains contain
functions of an arbitrary degree of definition, that is, totally undefined
n-ary functions and predicates and totally defined n-ary functions and
predicates, as well as all the functions having an intermediate degree of
definition. The resultant logic could have turned out to be trivial, with
an empty class of sentences valid for partial interpretations — i.e., with
an empty class of sentences true for the interpretation where every
function and every predicate is totally undefined.

This, as we shall see, is not the case, as we adopt what may be
called a Quinean point of view: functions and predicates can be arbitrar-
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ily undefined, but quantification (the ontological commitment) applies
only to the defined objects. One of the characteristic of our logic is that
sentences such as “(∀x)(x = x)” are valid, whereas, contrary to free
logics, those of the form “(a = a)” or more generally “(f 

nt1…tn =
f 

nt1…tn)” are not (even though they are never false).

Our approach is classical; we present the syntax, that of the fa-
miliar first-order functional calculus, followed by the semantics.  We
then introduce a system of sequents and show that it is complete.

The development of the proof is therefore relatively straightfor-
ward, except where certain traits peculiar to the partial aspect of the
interpretation are concerned.

One of these traits concerns the interpretation of the partial
character itself.  As we will show, a partial function will be understood
here to be a function that is not totally defined.  Therefore, the level of
definition of every function could be made total.  We will see that this
property, once formalized, is expressed in the form of a general con-
straint of monotonicity relative to an order whose immediate interpre-
tation is that of “level of definition”.  Indeed, when a function takes a
value, partial or total, for an argument that is not totally defined, the
value must be compatible with all the values the function takes for bet-
ter-defined arguments. The underlying idea in defining partial models is
to represent epistemic states: a non-omniscient agent can be represented
by a partial model which is an approximation of the intended model.

2. Syntax

Primitive symbols:
1. Individual variables x, y, z, x1, y1, z1, …, x2, y2, z2, ...
2. For every n ≥ 1, n-place predicate symbols P n

0 , P n
k , ...

3. For every n ≥ 1, n-argument function symbols f n
0 , ..., f n

k , ...

4. Logical constants ‘=’, ‘¬’, ‘ ∨’, ‘∃’.
5. Parentheses ‘(’, ‘)’.

Definition of terms:
 (i) Every individual variable is a term;
(ii) if f 

n is an n-arguments function symbol and t1, …, tn are terms, then
f 

nt1…tn is a term;
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(iii) nothing else is a term.

Definition of formulae:
(i) if t and t' are terms, then (t = t') is a formula;
(ii) if Pn is an n-places predicate symbol and t1,…, tn are terms,

then Pnt1…tn is a formula;
(iii) if A is a formula, ¬A is a formula;
(iv) if A and B are formulae, then (A ∨ B) is a formula;
(v) if  is a formula and x is a variable, then ∃xA is a formula;
(vi) nothing else is a formula.

Abbreviations:
(A ⊃ B):= (¬A ∨ B)
(A ∧ B):= ¬(¬A ∨ ¬B)
(A ≡ B):= ((A ⊃ B) ∧ (B ⊃ A))
∀xA:= ¬∃x¬A
T:= ∀x(x = x)
F:= ¬T
ℑ(A):= ((A ≡ T) ∨ (A ≡ F))
ℑ(t):= ∃x(t = x), where x does not appear in t.
ℑ(f 

n):= ∀x1… ∀xnℑ(f 
nx1 …xn ), where x1,…, xn are distinct variables.

ℑ(Pn):= ∀x1…∀xnℑ(Pnx1 …xn ), where x1,…, xn are distinct vari-
ables.

The last four abbreviations serve to introduce a functor whose in-
terpretation will, in its positive component, be “is totally defined”.   We
will return to this question after having introduced the semantics, to
which we now turn.

3. Semantics1

A model is an ordered pair < E ∪ {⊥e}, g> satisfying the follow-
ing properties.

1. E is a non-empty set (a set of individuals) and ⊥e is the undefined
object.  The undefined object is an artefact that proves to be of great
utility since it allows us to treat expressions that are defined and those

                                                
1 For a general presentation of the notion of partial functions in terms of

monotonic functions, see [3].
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that are not in a uniform way: for a term, to be undefined will simply be
to have ⊥e for value.  The introduction of an undefined object makes it
necessary, moreover, to introduce an order which we will designate as
“ ” and whose interpretation will be “a  b if and only if a is less de-
fined or equal to b”.  We have, formally, that for all a, b ∈ E ∪ {⊥e}, a

 b if and only if either a = ⊥e or a = b . E  ∪ {⊥e} is therefore a flat
meet semi lattice such that all the elements of E strictly dominate ⊥e

and are incomparable to each other.

2. g is a function such that:
(i) if Pn is an n-place predicate symbol, then g(Pn) is a monotonic func-
tion from (E ∪ {⊥e})n into {0, 1, ⊥} (the false, the true and the unde-
fined);
(ii) if f 

n is an n-argument function symbol, then g(f 
n) is a monotonic

function from (E ∪ {⊥e})n into E ∪ {⊥e}.

⊥ is the undefined truth-value and plays a role similar to ⊥e, that is to
say, one has ⊥  ⊥, ⊥  1, ⊥  0, 1  1 and  0  0. Relative to “ ”,
monotonicity is defined in the following way:

g(f 
n) is monotonic for its ith place if and only if for all a1,…, an ∈E ∪

{⊥e}, if ai  a '
i  then g(f 

n)(<a1,…, ai ,…, an >)  g(f 
n)(<a1,…, a '

i ,…, an >)

and
g(Pn) is monotonic for its ith place if and only if for all a1,…, an ∈E ∪
{⊥e}, if ai  a '

i  then g(Pn)(<a1,…, ai ,…, an >)  g(Pn)(<a1,…, a '
i ,…, an

>).

A function is monotonic if it is monotonic for all its places.  The
constraint of monotonicity is a consequence of the interpretation of ⊥
and ⊥e as undefined elements: a function that takes a certain value for
some argument must take values at least as defined for more defined
arguments, that is to say that the definedness of the values of the func-
tion increases with the definedness of the arguments.

Given a model M = <E ∪ {⊥e}, g>, an assignment on  M is a
function µ that assigns an element of E ∪ {⊥e} to each variable. Given
an element a ∈ E ∪ {⊥e} and an individual variable x, µ(a/x) is that as-
signment on M that differs at most from µ by assigning the value a to x.
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Let M = <E ∪ {⊥e}, g> be a model and let  µ be an assignment

on M. For each term t, the value  ||t||M,µ in E ∪ {⊥e} according to M and
µ is recursively defined as follows:

(i)  ||x||M,µ = µ(x) for every variable x;
(ii) ||f 

n(t1, ..., tn)||M,µ = g(f 
n)(< ||t1||M,µ , ..., ||tn||M,µ >).

For each formula A, the value  ||A||M,µ in {0, 1, ⊥} according to M
and µ is defined recursively as follow:

(i) ||(t = t' )||M,µ = 

    

1  iff  || t ||M, µ =  ||t’||M,µ  ≠ ⊥ e

0 iff  || t ||M, µ ≠⊥ e, || t’||M,µ  ≠ ⊥ e and  || t ||M,µ ≠  || t’||M,µ  

⊥ otherwise

 

 
 

 
  

(ii) ||Pnt1, ..., tn||M,µ  = g(Pn)(< ||t1||M,µ , ..., ||tn||M,µ >)

 

(iii) ||¬A||M,µ = 

    

1 iff|| A ||M,µ = 0

0 iff|| A ||M, µ = 1

⊥ otherwise

 

 
 

 
  

(iv) ||(A ∨ B)||M,µ = 

    

1 iff|| A ||M,µ = 1 or 1|| B ||M, µ = 1

0 iff || A ||M,µ = 0 and || B ||M, µ = 0

⊥ otherwise

 

 
  

 
 
 

 

(v) ||∃xA||M,µ   = 

    

1 iff there is an a ∈E such that || A ||M,µ (a / x ) = 1

0 iff for every a ∈E,  || A ||M,µ (a / x) = 0

⊥ otherwise

 

 
  

 
 
 

As it has been previously mentioned, the non-trivial character of
partial logic follows from the interpretation of the quantifier, which
covers only defined values.
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For instance, we see that the expression ℑ(t) (an abbreviation of
∃x(t = x), where x does not appear in t) will be true if and only if t is de-
fined and undefined if t is undefined, but will never be false.  So we can
express, in the object language, the fact that a term is defined, but we
cannot express the fact that a term is undefined: the expression ℑ(t) is
either true or undefined.  In fact, as we said earlier, it is impossible to
introduce a functor H whose interpretation would be ||H(t)||M,µ = 1 if and
only if ||t||M,µ = ⊥e , for such a functor is not monotonic.

We leave to the reader the exercise of verifying that other ex-
pressions such as ℑ(A), ℑ(f 

n) and ℑ(Pn) fulfill the required role, namely,
of being true if and only if the value of the expression is totally defined
and undefined otherwise.

One can easily verify that definitions (i)-(v) are maximal in the
following sense: any stronger definition of ||  ||M,µ (i.e., that provides
more 0 or more 1) is non-monotonic.

Definition of the notion of validity2

Given a set Γ of formulae and a formula A, we define the notions
of logical consequence and of valid formula in the following manner:

• Γ   A if and only if for every model M and every assignment µ
on M, if ||B||M,µ = 1 for every B ∈ Γ, then ||A||M,µ = 1.

•   A if and only if  Ø   A.

Notational conventions and definitions
• External parentheses of formulae may be omitted.
• An occurrence of a term t in a formula is free if and only if all
occurrences of all the variables in t are free.
• A(t'/t) designates the formula obtained by replacing every free
occurrence of t in A  by an occurrence of t'.
• t(t'/x) designates the term obtained by replacing every occurrence
of x in t with an occurrence of t'.

                                                
2 For a more general study of the notion of validity for the domains of partial

functions, see [2].
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4. System
The rules of the system can be grouped according to their

“meaning”. The first group includes the two general rules of the deduc-
tive system.

Group 1

R: ΓΓ∈  then , If A  A T:  Γ  A
                                                            

Γ ∪ ∆  A

The second group concerns the behaviour of identity.

Group 2

ID1: Γ  ℑ(t)  ID2: Γ  t = t'     Γ  A
                                                                                                                                      

Γ  t = t Γ  B

ID3: Γ  ℑ(t = t') ID4:   Γ  ℑ(t) ∧ ℑ(t')
                                                                                                                                                   

Γ  ℑ(t) ∧ ℑ(t') Γ  ℑ(t = t')

ID5:  ∃x(x = x)

where in ID2, B is the result of replacing some free occurrences of t in A
by occurrences of t' and these occurrences are free in B.

The fifth rule ensures that there is at least one object which is the
value of a variable and thereby excludes the trivial model in which the
“undefined” would be the only possible value for variables.

The third group imposes the constraints of monotonicity.
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Group 3

M1: Γ  ℑ(Pnt1, ..., ti, ..., tn)
                                                                                                                                                                                                                         

Γ  ℑ(ti) ∨ (Pnt1, ..., ti, ..., tn ≡ Pnt1, ..., t'i, ..., tn)

M2: Γ  ℑ(f 
nt1, ..., ti, ..., tn)

                                                                                                                                                                                                          

Γ  ℑ(ti) ∨ ( f 
nt1, ..., ti, ..., tn = f 

nt1, ..., t'i, ..., tn)

where t'i is any term.

The fourth group concerns Boolean terms.

Group 4

BOOL1: Γ  ℑ(A) BOOL2: Γ  ℑ(¬A)
                                                                                                        

Γ  ℑ(¬A) Γ  ℑ(A)

BOOL3a: Γ  ℑ(A) Γ  ℑ(B) BOOL3b: Γ  ¬(A ∨ B)
                                                                                                                                                                                                    

Γ  ℑ(A ∨ B)  Γ  ℑ(A) ∧ ℑ(B)

BOOL4a: Γ  ∀xℑ(A) BOOL4b: Γ   ¬∃xA
                                                                                                                       

Γ  ℑ(∃xA) Γ  ∀xℑ(A)

BOOL5: Γ   ∀x(A ∨ B)
                                                                          

Γ  A ∨ ∀xB

where in BOOL5, x has no free occurrence in A.



COMPLETENESS AND REPRESENTATION T HEOREM 93

Finally, the fifth and last group concerns the logical connectives.
Note that these are classical, except  ⊃ I, ¬ I, ∀Ι and ∀E.

Group 5

∧ Ι: Γ   A Γ  B ∧ Ε: Γ   A ∧ B Γ   A ∧ B
                                                                                                                                                                                  

Γ   A ∧ B Γ   A Γ   B

∨ Ι: Γ   A Γ   B
                                                                                                                                                          

Γ   A ∨ B Γ   A ∨ B

∨ Ε: Γ  ∪ {A}  C Γ  ∪ {B}  C Γ   A ∨ B
                                                                                                                                                                                                          

Γ   C

⊃ I: Γ ∪ {A}  B ⊃ E:  Γ   A Γ  A ⊃ B
                                                                                                                                                                                                    

Γ ∪ {ℑ(A)}  A ⊃ B Γ   B

¬ I: Γ  ∪ {A}  B Γ  ∪ {A}  ¬B Γ  ℑ(A)
                                                                                                                                                                                                                                        

Γ   ¬A

¬ E: Γ   A Γ   ¬A
                                                                                        

Γ   B

∀Ι: Γ  ∪ {ℑ(t)}  A ∀ E: Γ   ∀xA
                                                                                                                                                                              

Γ   ∀xA(x/t) Γ ∪ {ℑ(t)}  A(t/x)

where in ∀Ι, neither x, nor any variable of t occurs freely in any member
of Γ and x is free for every variable of t in A.



94 FRANÇOIS LEPAGE AND SERGE LAPIERRE

∃I: Γ   A(t/x) ∃E: Γ   ∃xA Γ ∪ {A(t/x)}  B
                                                                                                                                                                                                            

Γ   ∃xA Γ  B

where in ∃E, no variable of t occurs freely either in B, or in A, or in any
member of Γ and t is free for x in A.

The following provable derived rules will be useful for the com-
pleteness proof.

R1: Γ  A    Γ ∪ {A}  B V:  Γ  ∀xA
                                                                                                                                                                                

Γ  B Γ  ∀yA(y/x)

where y does not occur freely in A and is free for x in A.

T1:  T R2: Γ  A
                                      

Γ  ℑ(A)

R3: Γ  A ≡ B Γ  A Γ  A ≡ B Γ  B
                                                                                                                                                

 Γ  B Γ  A

R4: Γ  t = t' R5: Γ  t = t' R6: Γ  t = t'
                                                                                                                                                      

Γ  ℑ(t ) Γ  t' = t Γ  ℑ(t')

R7: Γ   A T2:  F ⊃ A R8: Γ  ¬A
                                                                                                                                                                          

Γ   ¬¬A Γ  A ≡ F

R9: Γ  A  ⊃ B R10: Γ  A ≡ F R11:  Γ ∪ {A ≡ T}  A
                                                                                                                       

Γ ∪ {A}  B Γ  ¬A
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R12: Γ ∪ {A ≡ F}  ¬A R13: Γ  ℑ(A) R14: Γ  ¬¬A
                                                                                                                       

Γ  A ∨ ¬A Γ  A ∨ ¬A

R15: Γ  ¬¬A R16: Γ  ¬A ∧ ¬B R17: Γ  A ∨ B
                                                                                                                                                                                                

Γ  A Γ  ℑ(A ∨ B) Γ  ¬¬A ∨ ¬¬B

R18: Γ  ¬A ∧ ¬B R19: Γ   ∃xA R20: Γ   ∀x¬A
                                                                                                                                                                                                                

Γ  ¬(A ∨ B) Γ   ∃x¬¬A Γ   ¬∃xA

R21: Γ  ¬¬A ∨ ¬¬B R22: Γ  ¬(A ∨ B)
                                                                                                                                                                                       

Γ  A ∨ B Γ   ℑ(¬¬A ∨ ¬¬B)

R23: Γ  ¬(A ∨ B) R24:  Γ   ∃x¬¬A R25: Γ   ¬∃xA
                                                                                                                                                                                                               

Γ   ¬A ∧ ¬B Γ   ∃xA Γ  ∀x¬A

5. Completeness
From this point forward, our demonstration of completeness fol-

lows the classical method introduced by Henkin. It is nevertheless made
more complicated than Henkin's proof for one thing by the absence of
the excluded-middle: a sentence that is not true can be false or unde-
fined. The strategy, therefore, will not be to construct, from some con-
sistent set, a maximally consistent set in the sense that the addition of
any foreign formula to the set breaks the consistency. We clearly need a
weaker notion of maximal extension.  It is necessary to construct, from
any consistent set, a consistent set which contains all its valid conse-
quences, and thus all the valid consequences of the initial set.  But since
the intended interpretation is partial, there will possibly be some for-
mula A such that neither A nor ¬A belong to the extension. The stages
of the proof will be the following:



96 FRANÇOIS LEPAGE AND SERGE LAPIERRE

1) first, we will show that every consistent set of formulae can be ex-
tended to a saturated (as in [5] and [4])  for ∨, ∃, ∀, deductively closed
and consistent set (SDCCS);
2) we will then show that this set allows us to define a partial model and
a partial valuation;
3) finally, we will show that for this partial model and valuation, and for
every formula A, A receives the value 1 if and only if A is in the exten-
sion, A receives the value 0 if and only if ¬A is in the extension, and
otherwise A receives the undefined value.

Construction of an  -, - and  -saturated set from any consistent set
Let Γ be a consistent set of formulae and let  C  be a formula such

that Γ  C (C is called the test formula).  We will construct a set Γ' such
that
(i) Γ ⊆ Γ'
(ii) Γ'  C
(iii) for every formula A, Γ'  A if and only if A ∈ Γ'.
(iv) Γ' is ∨-saturated, i.e.,  if  Γ'  A ∨ B, then  Γ'  A  or Γ'  B
(v) Γ' is ∃-saturated, i.e.,  if  Γ'  ∃xA, then Γ'  A(y/x) for some variable
y.
(vi) Γ' is  ∀-saturated, i.e.,  if  Γ'  ∀xA, then Γ'  A(y/x) for some vari-
able y such that Γ'  ℑ(y).

We will then show the truth-lemma itself: there is a valuation such
that A ∈ Γ' if and only if A is satisfied by that valuation, which gives us
strong completeness.

We assume that we have an enumeration ∆ of all formulae of the
language, such that each formula appears countably many times in it,
and we designate by Dn the n-th formula according to this enumeration.
We construct a sequence <Γi> of nested sets in the following way.

1) Γ0 = Γ;
2) if Γ2n  Dn, then Γ2n+2 = Γ2n+1 = Γ2n;
3) if Γ2n  Dn, then Γ2n+1 = Γ2n ∪ {Dn} and

a) if Dn = Pmt1…tm,  then Γ2n+2 = Γ2n+1;
b) if Dn = (t = t'),  then Γ2n+2 = Γ2n+1;
c) if Dn = ¬A,  then Γ2n+2 = Γ2n+1;
d) (∨-saturation) if Dn = (A ∨ B), then
(i) if Γ2n+1 ∪ {A}  C,  then Γ2n+2 = Γ2n+1  ∪ {A};
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(ii) if Γ2n+1 ∪ {A}  C,  then Γ2n+2 = Γ2n+1 ∪ {B};
e) (∃-saturation) if Dn = ∃xA,  then Γ2n+2 = Γ2n+1 ∪ {A(y/x)}, where y
is a new variable that does not appear in Γ2n+1.

Let Γ* = 
n
U  Γn. Then:

1) Γ* is closed for , that is to say Γ*  A if and only if A ∈ Γ*.
The proof is standard.

2) C ∉ Γ*.
The proof is standard.

3) Γ* is ∨-saturated. This clearly follows from the condition d) in the
construction of Γ*.

4) Γ* is ∃-saturated. This clearly follows from the condition e) in the
construction of Γ*.

We will say that Γ* is the maximal ∨- and ∃-saturated extension
of Γ for the enumeration ∆ and the test formula C.

Nothing in this construction guarantees that Γ* is ∀-saturated. In
the classical case, this saturation is ensured by syntactic negacompletion:
if Γ*  ∀xA, then Γ*  ¬∀xA. Therefore Γ*  ∃x¬A and Γ*  ¬A(y/x)
for some y and finally, Γ* being consistent, Γ*  A(y/x). Such a deriva-
tion is not valid for partial interpretations.  It could be the case that Γ*

 ∀xA and Γ*  ¬A(y/x): for every variable y, A(y/x) will be true or un-
defined.  To obtain the ∀-saturation, we should ensure that the construc-
tion of the maximal extension is such that if ∀xA is not derivable, then
the extension admits at least one instanciation A(y/x) which is not de-
rivable either, without bringing in the derivability of ¬A(y/x).

We will construct an ∀-saturated set Γ' such that Γ* ⊆ Γ '. First,
we are given:
a) an enumeration Q0,…, Qn ,…, of all the formulae of the form ∀xA,

b) a denumerable sequence of new variables x ∗
0 ,…, x ∗

n  , … ,
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c) a denumerable sequence of enumerations ∆0, …, ∆n, … , of formulae of
the language obtained through the successive enrichment of the initial
vocabulary with the variables x ∗

0 ,…, x  n
∗  , … .

Let <Γ '
n  > be the sequence of ∨-saturated and ∃-saturated super-

sets of Γ* defined as follows.

(i) Γ '
0  = Γ* and C0 = C (where C is the test formula that served in

the construction of Γ*).

(ii) If  Γ '
n   Qn,  then Γ '

1+n
 =  Γ '

n   and Cn +1 = Cn .

(iii) If  Γ '
n  Qn  (with Qn  = ∀xA), then let Γ "

n =  Γ '
n   ∪ {ℑ(x ∗

n )}.

We then have Γ "
n    (Cn ∨ A(x ∗

n  /x)) since, by ∀I we would have

Γ '
n    ∀x ∗

n  (Cn ∨ A(x ∗
n /x)), and, by BOOL5, Γ '

n  Cn ∨ ∀x ∗
n A, x ∗

n  not

being free in Cn. By the induction hypothesis, Γ '
n  Cn, Γ "

n  is ∨-saturated

and therefore Γ '
n  Cn  or Γ '

n  ∀x ∗
n A(x ∗

n /x). Therefore Γ '
n  

∀x ∗
n A(x ∗

n /x). By rule V,  Γ '
n  ∀xA, which is contrary to the hypothesis.

So we define  Γ '
1+n as the maximal ∨-and ∃-saturated extension of

Γ "
n with Cn +1 = (Cn ∨ A(x ∗

n /x)) as the test formula of consistence for the

enumeration ∆n.

Let Γ' = 
n
U Γ '

n .

Γ' is clearly consistent, ∨-saturated, ∃-saturated and ∀-saturated.

Definition of the interpretation

We will now define a pre-order relation between the expressions
of the language, the natural interpretation of which will be “is at most as
defined as” relative to Γ'. This stage of the construction has no equiva-
lent in the classical case.  Indeed, in order to define an interpretation on
the basis of Γ', we should define a relation of equivalence on the set of
expressions of the language the interpretation of which is “to have the
same level of definition”.  Although this is relatively easy for the for-
mulae, the fact that we cannot for reasons of monotonicity express that
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an expression is undefined in the object language somewhat complicates
things. Fortunately, we can speak of the undefined in the metalanguage.

Definition 1
Let “〈〈” be the following relation:
1) if A and B are formulae, A 〈〈 B if and only if
if A ∈ Γ ', then B ∈ Γ ' and
if ¬A ∈ Γ ', then ¬B ∈ Γ ';
2) if t and t' are terms, t 〈〈 t' if and only if
if (t = t) ∈ Γ ', then (t = t')  ∈ Γ'
that is to say that either (t = t) ∉ Γ ' or (t = t')  ∈ Γ';
3) if Pn and Qn are two n-places predicate symbols, then Pn 〈〈 Qn  if
and only if for all terms t1,…,tn, Pnt1…tn 〈〈 Qnt1…tn.
4) if f 

n and gn are two n-arguments function symbols, then f 
n 〈〈 gn

if and only if for all terms t1,…,tn, f 
nt1…tn 〈〈 gnt1…tn.

Definition 2
For all expressions α, β, α ≈ β  if and only if α 〈〈 β and β 〈〈 α.

Lemma 1
“ 〈〈” is a pre-order relation (that is, it is reflexive and transitive).
Proof : trivial.

Lemma 2
“≈” is an equivalence relation.
Proof : trivial.

We designate by C≈(α) the equivalence class of the expression α.

For the canonical interpretation that we are building from Γ', all
the expressions of one equivalence-class will be seen to take the same
value.  Now we will define domains Mi and a function which assigns an
element of one of the domains to each equivalence-class C≈(α).

Construction of the domains Mi

We recursively define
a) a function K  which assigns exactly one value to each equivalence
class;
b) sets of values Mi  such that M1 will be the set of values of formulae, M2

will be the set of values of terms, M3n ⊆ (M n
2 → M1) will be the set of
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value of n-places predicate symbols, i.e. M3n will be a subset of the
monotonic functions from M n

2   into M1 and finally M4n ⊆ (M n
2  → M2)

will be the set of values of n-arguments function symbols, i.e. M4n will be
a subset of the monotonic functions from M n

2   into M 2 ;
and we show that:
c) for all expressions of the language α, β (formulae, terms, predicate
symbols and function symbols), K(C≈(α))  K(C≈(β)) if and only if α 〈〈 β.

(i) For formulae
a) K(C≈(A)) = 1 iff A ∈ Γ '

K(C≈(A)) = 0 iff ¬A ∈ Γ ', and
K(C≈(A)) = ⊥ otherwise

From definitions 1 and 2 and lemma 2 it is obvious that K(C≈(A))
= K(C≈(B)) if and only if A ≈ B, if and only if [A∈ Γ ' and B∈ Γ '] or
[¬A∈ Γ ' and ¬B∈ Γ '] or [A∉ Γ ' and B∉ Γ ' and ¬A∉ Γ ' and ¬B∉ Γ ']. So,
K(C≈(A)) does not in any way depend on the particular formula A which
is chosen;
b) M1 = {0, 1, ⊥} is the set of values of formulae3.
c) One easily verifies that K(C≈(A))  K(C≈(B)) if and only if A  〈〈 B.

(ii) For terms
a) K(C≈(t)) = C≈(t). Clearly K(C≈(t)) does not in any way depend on the
element t which is chosen.
b) M2 = { C≈(t) : ( t  = t ) ∈ Γ '} ∪ {⊥e}, where ⊥e = {t  : ( t  = t ) ∉ Γ '}.
Rule ID5 ensures that M2 ≠ {⊥e}. Indeed,  ∃x(x = x) ∈ Γ ' and so by ∃-
saturation, (y = y) ∈ Γ' for some y. The inclusion of empty models in-
volves the usual inconveniences.
c) Let us verify that K(C≈(t))  K(C≈(t’)) if and only if t 〈〈 t’
⇒
Suppose that K(C≈(t))  K(C≈(t’)).
If K(C≈(t)) = ⊥e, then ( t  = t ) ∉ Γ '. Thus by definition of 〈〈,  t 〈〈 t'.
If K(C≈(t)) ≠ ⊥e, then K(C≈(t)) = K(C≈(t’)) by the definition of   and so
C≈(t) = C≈(t’), t ≈ t' and t 〈〈 t'.
⇐
Suppose that t 〈〈 t'.

                                                
3 We could define 0 =def {A : ¬A ∈ Γ'}, 1 =def {A : A ∈ Γ'} and ⊥ = def {A :

A ∉ Γ' and ¬A ∉ Γ'} which ensures the existence of ⊥.
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If ( t = t ) ∉ Γ ', then K(C≈(t)) = ⊥e and so, by the definition of  ,  ⊥e 
K(C≈(t’)).
If ( t = t ) ∈ Γ', then by the definition of 〈〈, ( t = t' ) ∈ Γ'. But by rule
ID2, this implies that ( t' = t' ) ∈ Γ ', ( t' = t ) ∈ Γ ' and so t' 〈〈 t . Thus by
the definition of ≈, t ≈ t'. So K(C≈(t)) = K(C≈(t’)) and K(C≈(t))  K(C≈(t’)).

(iii) For predicate symbols
a) K(C≈( P

n)) is the function h  of M n
2

 in M1 such that
h(<a1,…,an>) = K(C≈( P

nt1…tn)), where C≈( ti) = ai.
In order to show that this definition is adequate, it is necessary to

verify that 1) for every a ∈ M2, there is a term t  such that C≈( t) = a and
that 2) if C≈( ti1) = C≈( ti2), then K(C≈( P

nt1…ti1…tn)) = K(C≈( P
nt1…ti2…tn)).

1) follows directly from (ii) b).
For 2) one must examine two cases.
The first is the one in which (ti1 = ti2) ∈ Γ'. Rules ID2 and R5 guarantee
that Γ' is closed for the intersubstitution of ti1 and ti2. Hence we will have
either Pnt1…ti1…tn and Pnt1…ti2…tn both in Γ', or their negations both in Γ'
or, finally, neither the one nor the other.  By definition of K for for-
mulae, Pnt1…ti1…tn and Pnt1…ti2…tn  both belong to the same equivalence
class.

The second case is the one in which (ti1 = ti2) ∉ Γ'. From C≈( t i1) =
C≈( ti2)  and the definition of ≈ and 〈〈 one easily shows that (ti1  = ti1) ∉ Γ'
and (ti2 = ti2) ∉ Γ'. It follows, by ID1, that ℑ(ti1) ∉ Γ ' and ℑ(ti2) ∉ Γ '. If
neither Pnt1…ti1…tn, nor Pnt1…ti2…tn,  nor ¬Pnt1…ti1…tn, nor ¬Pnt1…ti2…tn

belongs to Γ', then Pnt1…ti1…tn and Pnt1…ti2…tn  belong to the same class.
If not, we take the one (one of the ones) that belongs to Γ'. Suppose,
for example, that it is Pnt1…ti1…tn. By M1 and the ∨-saturation of Γ' we
show that (Pnt1…ti1…tn ≡ Pnt1…ti2…tn )  ∈ Γ'. From R3 it follows that
Pnt1…ti2…tn  ∈ Γ'. The other cases are similar.

b) Now we must show that K(C≈(P
n)) is monotonic. Since an n-ary predi-

cate is monotonic if and only if it is monotonic for each of its n argu-
ments, it will suffice to verify for any given argument.  Moreover, be-
cause the proof is the same for all n, it will suffice to verify the mono-
tonicity of unary predicates.

We have that K(C≈(P)) is monotonic
if and only if
for every C≈(t) and C≈(t’) , if C≈(t)  C≈(t’), then K(C≈(P))(C≈(t)) 
K(C≈(P))(C≈(t’))
if and only if
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(by (ii) c), (ii) a) and (iii) a)) for every t, t', if t 〈〈 t' , then K(C≈(Pt)) 
K(C≈(Pt’))
if and only if
(by (i) c)) for every t, t', if t 〈〈 t' then, Pt 〈〈 Pt'.
By reductio ad absurdum  let us suppose that for some t, t', we have t 〈〈
t'  and not Pt 〈〈 Pt'. Then by the definition of 〈〈 this means that (the
“[,]” serving to clarify)
[(t =t) ∉ Γ ' or (t =t') ∈ Γ '] and  [[Pt ∈ Γ' and Pt' ∉Γ'] or [¬Pt ∈ Γ' and
¬Pt' ∉Γ']].
We have to verify two cases:
Case 1
[(t =t) ∉ Γ ' or (t =t') ∈ Γ '] and [Pt ∈ Γ ' and Pt' ∉Γ']
Case 1.1
(t =t') ∈ Γ ' and Pt ∈ Γ ' and Pt' ∉Γ', which is forbidden by ID2.
Case 1.2
(t =t) ∉ Γ ' and Pt ∈ Γ' and Pt' ∉Γ'. From Pt ∈ Γ' and R2, we have that
ℑ(Pt). But by
M1, ℑ(t) ∨ (P(t) ≡ P(t')) ∈ Γ '. By the ∨-saturation  of Γ', we have either
ℑ(t) ∈ Γ ' or (P(t) ≡ P(t')) ∈ Γ '. ℑ(t) ∈ Γ ' is not possible since by ID1, we
would then have (t =t) ∈ Γ ' which is contrary to the hypothesis.  There-
fore (P(t) ≡ P(t')) ∈ Γ '. It follows by R3 that  P(t') ∈ Γ ', which is absurd.

Case 2
[(t =t) ∉ Γ ' or (t =t') ∈ Γ '] and [¬Pt ∈ Γ ' and ¬Pt' ∉Γ']
The proof is similar to that of case 1.

(iv) For n-places function symbols
K(C≈(f 

n)) is the function h of M n
2  in M2 such that h(<a1,…,an>) =

K(C≈(f 
nt1…tn))

where C≈(ti) = ai.
In order to show that this definition is adequate, we must verify that 1)
for every a ∈ M2, there is a term t  such that C≈(t) = a and  2) if C≈(ti1) =
C≈(ti2) then
 K(C≈( f 

nt1…ti1…tn)) = K(C≈( f 
nt1…ti2…tn)).

1) has already been proven.
For 2), let us suppose by reductio ad absurdum  that C≈(ti1) = C≈(ti2) and
 K(C≈( f 

nt1…ti1…tn)) ≠ K(C≈( f 
nt1…ti2…tn)),

that is to say that C≈( f 
nt1…ti1…tn) ≠ C≈( f 

nt1…ti2…tn).
There are two cases
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Case 1
(ti1 = ti1) ∈ Γ' and by definitions 1 and 2, we have (ti1 = ti2) ∈ Γ'.
Then by using  R2, ID3 and ∧E we have that ℑ(ti1) ∈ Γ '.
Case 1.1
Suppose that ℑ(f 

nt1…ti1…tn) ∈ Γ '. By ID1 we have
(f 

nt1…ti1…tn = f 
nt1…ti1…tn) ∈ Γ,  and by ID2, (f 

nt1…ti1…tn = f 
nt1…ti2…tn) ∈

Γ'. By definitions  1 and 2, we have that f 
nt1…ti1…tn ≈ f 

nt1…ti2…tn, which
is contrary to the hypothesis.
Case 1.2
Suppose that ℑ(f 

nt1…ti1…tn) ∉ Γ'. In that case, the same argument as in
1.1 will bring us to conclude that ℑ(f 

nt1…ti2…tn) ∉ Γ'. By  R4 it follows
that
(f 

nt1…ti1…tn = f 
nt1…ti1…tn) ∉ Γ' and (f 

nt1…ti2…tn = f 
nt1…ti2…tn) ∉ Γ ' and

from there, in virtue of definitions 1 and 2, that f 
nt1…ti1…tn ≈

f 
nt1…ti2…tn, which is contrary to the hypothesis.

Case 2
(ti1 = ti1) ∉ Γ'. It can easily be proved, from definitions 1 and 2 that (ti2 =
ti2) ∉ Γ'.
By ID1, it is clear that ℑ(ti1 ) ∉ Γ ' and ℑ(ti2 ) ∉ Γ '.
Suppose that ℑ(f 

nt1…ti1…tn) ∈ Γ ' . By M2 and the ∨-saturation of Γ',
(f 

nt1…ti1…tn = f 
nt1…ti2…tn) ∈ Γ', which is absurd.  Therefore

ℑ(f 
nt1…ti1…tn) ∉ Γ'. A similar argument leads us to ℑ(f 

nt1…ti2…tn) ∉ Γ'.
By R4 we then have that (f 

nt1…ti1…tn = f 
nt1…ti1…tn) ∉ Γ' and (f 

nt1…ti2…tn

= f 
nt1…ti2…tn) ∉ Γ ', which by definitions 1 and 2 entails that f 

nt1…ti1…tn  ≈
f 

nt1…ti2…tn = ⊥e, which is absurd, and which completes the proof.
Now we can define the interpretation.

A canonical model for partial predicate calculus
Definition 3
Let MK = <M2, gK> such that M 2 is as above, gK(Pn) = K(C≈(P

n)) and

gK(f 
n) = K(C≈(f 

n)) (we will sometimes simply write M).

Definition 4
Let µK  : Var → M2  be the assignment such that µK(x) = K(C≈(x)).

To prove the main lemma, we will need some secondary lemmas.
The simplest proofs are left to the reader.
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Lemma 3

For every term t, ||t||M,µK = C≈(t)

The next two lemmas are very important: they show that our ID
rules adequately characterize the behaviour of identity in partial do-
mains.

Lemma 4

C≈(t) = C≈(t’) ≠ ⊥e if and only if (t = t') ∈ Γ '

Lemma 5

C≈(t) ≠ C≈(t’) , C≈(t) ≠ ⊥e  and C≈(t’) ≠ ⊥e  if and only if ¬(t = t') ∈ Γ '.

Proof
⇒
By lemma 4 and C≈(t) ≠ C≈(t’) , we have that (t = t ') ∉ Γ'. If C≈(t) ≠ ⊥ e

and C≈(t’) ≠ ⊥e, then by the definition of M2, (t  = t) ∈ Γ' and (t '= t ') ∈
Γ'.
From (t  = t) ∈ Γ ' and R4, we have ℑ(t) ∈ Γ' and by a similar argument,
ℑ(t')∈ Γ '. By ∧I and ID4, we have  ℑ(t = t ') ∈ Γ '.
By the definition of ℑ, we therefore have
((t = t ') ≡ T) ∨ ((t = t ') ≡ F) ∈ Γ '.
By the ∨-saturation of Γ', we have either ((t = t ') ≡ T) ∈ Γ ', or ((t = t ') ≡
F) ∈ Γ '.
Therefore by T1 and R3, if ((t = t ') ≡ T) ∈ Γ', then (t = t ') ∈ Γ', which
is absurd.
Therefore ((t = t ') ≡ F) ∈ Γ ', which by R10 implies that ¬(t = t ') ∈ Γ '.
⇐
Suppose that ¬(t = t') ∈ Γ ' and let us show that C≈(t) ≠ C≈(t’) , C≈(t) ≠ ⊥ e

and C≈(t’) ≠ ⊥e.
 If ¬(t = t') ∈ Γ ', then by R2, ℑ(¬(t = t')) ∈ Γ '.
We then show, by BOOL2, that
ℑ(t = t') ∈ Γ '.
By ID3 and ∧E, we have ℑ(t ) ∈ Γ ' and  ℑ(t') ∈ Γ '. So by ID1, (t = t ) ∈
Γ' and 
(t' = t') ∈ Γ ' and so C≈(t) ≠ ⊥e  and C≈(t’) ≠ ⊥e.
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Let us show that if ¬(t = t') ∈ Γ ', then C≈(t) ≠ C≈(t’). By reductio ad
absurdum let us suppose that C≈(t) = C≈(t’). By the definition of ≈, the
following two sentences are true:
if (t = t) ∈ Γ ', then (t = t') ∈ Γ ', and if (t'= t') ∈ Γ ', then (t = t') ∈ Γ'. The
consistency of Γ' precludes that (t = t') ∈ Γ '. So (t = t) ∉ Γ ' and  (t'= t') ∉
Γ' and by the definition of M2, C≈(t) = C≈(t’) = ⊥e, which is absurd since
we have shown that if ¬(t = t') ∈ Γ ', then C≈(t) ≠ ⊥e  and C≈(t’) ≠ ⊥e.

Lemma 6
For every a ∈ M2, a ≠ ⊥ e and every finite set X of variables, there is a
variable x ∉ X such that a = C≈(x).

Lemma 7
For every a ∈ M2, every term t and every t' such that a = C≈(t’), ||t||M,µK(a/x)

= ||t(t'/x)||M,µK.

Lemma 8
For every a ∈ M2 and every term t such that a = C≈(t) , | |A||M,µK(a/x) =
||A(t/x)||M,µ K

Proof
We proceed by induction.
(i) A is (t = t')
This follows directly from lemma 7.
(ii) A is Pnt1, ..., tn. In that case,
||Pnt1, ..., tn||M,µK(a/x) = definition of ||  || and gK

K(C≈( P
n))(<||t1||M,µK(a/x)…||tn||M,µK(a/x)>) = lemma 7

K(C≈( P
n))(<||t1(t/x)||M,µK…||tn(t/x)||M,µK>) = definition of K

||Pnt1(t/x)...tn(t/x)||MµK = definition of (t/x)
||Pnt1, ..., tn(t/x)||M,µK

(iii) A is ¬B,  the demonstration is trivial.
(iv) A is B ∨ C, the demonstration is trivial.
(v) A is ∃yB. There are two sub-cases.

a) x = y
||∃xB||MµK(a/x) = by the definitions of µK(a/x) and ||  ||
||∃xB||MµK = x is not free in ∃xB
||∃xB(t/x)||M,µK
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b) x ≠ y
Let us show the identity for any term t such that C≈(t) = a.

||∃yB||M,µK(a/x) =

    

1 iff there is a b ∈E such that || B ||M,µ K (a / x )( b/ y) = 1

0 iff for every b ∈E,  || B ||M, µ K (a / x )(b / y )= 0

⊥ otherwise

 

 
  

 
 
 

if and only if, since x ≠ y entails that µK(b/x)(a/y) = µK(a/y)(b/x)

||∃yB||M,µK(a/x) =

    

1 iff there is a b ∈E such that || B ||M,µ K (b/x)(a/y) = 1

0 iff for every b ∈E,  || B ||M, µ K (b/x)(a/y) = 0

⊥ otherwise

 

 
  

 
 
 

if and only if, by the induction hypothesis,

||∃yB||M,µK(a/x) =

    

1 iff there is a b ∈E such that || B( t / x )||M,µ K (b/y) = 1

0 iff for every b ∈E,  || B ||M, µ K (b/y) = 0

⊥ otherwise

 

 
  

 
 
 

if and only if

||∃yB||M,µK(a/x) =  ||∃yB(t/x)|| M,µK

Lemma 9
ℑ(t) ∈ Γ ' if and only if (t = t) ∈ Γ '.

Lemma 10
ℑ(t) ∈ Γ ' if and only if C≈(t) ≠ ⊥e.

Lemma 11
Let A be any formula . For every a, a  ≠ ⊥ e, ||A||M,µK(a/x) = 1 if and only if
for every term t free for x in A such that ℑ(t) ∈ Γ ',  ||A(t/x)||M,µK = 1, and
for every a, a  ≠ ⊥e, ||A||M,µK(a/x) = 0 if and only if for every term t free for
x in A such that ℑ(t) ∈ Γ ',  ||A(t/x)||M,µK = 0.
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Main lemma
M is a model such that for every formula A
||A||M,µK = 1 iff A ∈ Γ '
||A||M,µK = 0 iff ¬A ∈ Γ '
||A||M,µK = ⊥ otherwise.

Proof
By induction, we verify that  ||A||M,µK = 1 if and only if A ∈ Γ ' and ||A||M,µK

= 0 if and only if ¬A ∈ Γ ' simultaneously.  The third possibility is satis-
fied automatically if the first two are.
(i) a)
||(t = t')||M,µK = 1 iff definition of ||  ||
||t||M,µK = ||t'||M,µK ≠ ⊥e iff lemma 3
 C≈(t) = C≈(t’) ≠ ⊥e iff lemma 4
(t = t') ∈ Γ '

b)
||(t = t')||M,µK = 0 iff definition of ||  ||
||t||M,µK ≠  ||t'||M,µK, ||t||M,µK ≠ ⊥e  and  ||t'||M,µK ≠ ⊥e  iff lemma 3
C≈(t) ≠  C≈(t’), C≈(t) ≠ ⊥e  and  C≈(t) ≠ ⊥e  iff lemma 5
¬(t = t') ∈ Γ '

(ii) a)
||Pnt1, ..., tn||M,µK = 1 iff definition of ||  ||
gK(Pn)(<||t1||M,µK…||tn||M,µK>) = 1 iff lemma 3
gK(Pn)(< C≈( t1),…, C≈( tn) >) = 1 iff definition of gK

K (C≈(P
n))( < C≈( t1),…, C≈( tn) >) = 1 iff definition of K (C≈(P

n))
K (C≈(P

nt1 … tn)) = 1 iff definition of K
Pnt1 … tn ∈ Γ '

b)
||Pnt1, ..., tn||M,µK = 0 iff definition of ||  ||
gK(Pn)(<||t1||M,µK …||tn||M,µK>) = 0 iff lemma 3
gK(Pn)( < C≈( t1),…, C≈( tn) >) = 0 iff definition of gK

K (C≈(P
n))( < C≈( t1),…, C≈( tn) >) = 0 iff definition of K (C≈(P

n))
K (C≈(P

nt1 … tn)) = 0 iff definition of K
¬Pnt1 … tn ∈ Γ '

(iii) a)
||¬A||M,µK = 1 iff definition of ||  ||
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||A||M,µK = 0 iff induction hypothesis
¬A ∈ Γ '
b)
||¬A||M,µK = 0 iff definition of ||  ||
||A||M,µK = 1 iff induction hypothesis
A ∈ Γ '

iv) a)
 ||A ∨ B||M,µK = 1 iff definition of ||  ||
||A||M,µK = 1 or ||B||M,µK = 1 iff  induction hypothesis
A ∈ Γ ' or B ∈ Γ ' iff ∨I and ∨-saturation of Γ'
(A ∨ B) ∈ Γ '

b)
||A ∨ B||M,µK = 0 iff definition of ||  ||
||A||M,µK = 0 and ||B||M,µK = 0 iff induction hypothesis
¬A ∈ Γ ' and ¬B ∈ Γ ' iff R18, ∧I and R23
¬(A ∨ B) ∈ Γ '

(v) a)
||∃xB||M,µK = 1 iff definition of ||  ||
there is an a ∈ E such that ||B||M,µK(a/x)  = 1 iff lemma 8
there is an a ∈ E  and a term t such that a = C≈( t)  and
||B(t/x)||M,µK = 1 iff induction hypothesis
B(t/x) ∈ Γ ' iff ∃I and ∃-saturation of Γ'
∃xB ∈ Γ '

b) ||∃xB||M,µK = 0 iff definition of ||  ||
for every a  ≠ ⊥e, ||B||M,µK(a/x) = 0  iff lemma 10 and 11
for every t  such that ℑ(t) ∈ Γ ', ||B(t/x) ||M,µK = 0 iff induction hypothesis
for every t  such that ℑ(t) ∈ Γ ', ¬B(t/x) ∈ Γ ' iff ∀-saturation and ∀E
∀x¬B ∈ Γ ' iff R20 and R25
¬∃xB ∈ Γ '

Strong completeness theorem
If Γ   A, then Γ  A.

Proof
Let us suppose that  it is not the case that Γ  A. Let Γ' be a deductively
closed ∨, ∃ and ∀-saturated set defined as above, taking A as the test
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formula. Then A ∉ Γ'. By the main lemma, we have an interpretation
for which A is either false or undefined and so it is not the case that Γ 
A.

This proof is, from a purely logical point of view, rather standard
and intrinsicaly of no real interest. What is interesting is that it provides
us with a representation theorem. Indeed, the classical Henkin’s proof
relies on the following fundamental property: any maximally consistent
set determines a canonical model i.e., any maximally consistent set de-
termines a canonical classical value for each predicate and each func-
tional term. Our result is an extension of this idea and what we have
proved is that if we adopt the hypothesis that the interpretation of an
epistemic state must use maximal monotonic partial functions as values
for logical connectives and quantifiers, then the completeness theorem
is a representation theorem: any SDCCS determines one and only one
partial value for each predicate and each functional term. Thus under
the maximality and the monotonicity hypotheses for epistemic states,
our first-order logic is the logic of epistemic states.

Université de Montréal/Collège de Bois-de-Boulogne
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