
Logica Trianguli, 4, 2000, p. 25-39

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY*

Santiago FERNÁNDEZ LANZA

Abstract

 In this work we propose a Prolog program that analyses the degree of synonymy of
two words in a dictionary of synonyms, and their behaviour when they are
substituted in a sentence.

1. Introduction

If we aim to characterise synonymy just as a human conceives it, we
will have to consider aspects such as its contextuality, subjectivity,
ambiguity, imprecision or gradual character. Faced with this variety and
complexity of aspects involved, this work is aimed at an empirical study of
synonymy rather than a theoretical one. This is based on the analysis of a
short fragment of a dictionary of synonyms, and in the present work The

New Collins Dictionary and Thesaurus has been used [3]. In the cited
work, information regarding synonymy is structured in the following
manner: word, list of synonymous words, meaning. For example, the word
“fruit” has the list of synonyms {“crop”, “harvest”, “produce”, “product”,
“yield”} in the first meaning, and {“advance”, “benefit”, “consequence”,
“effect”, “outcome”, “profit”, “result”, “return”, “reward”} in the second.

The usual objective in using a dictionary of this type is to search for
the synonyms of a word in order to substitute it for another in the sentence.
However, if we consider synonymy as a question of degree, the new word
may not mean exactly the same as the one replaced, and this may affect the
informative content of the sentence as a whole.

To define a term a dictionary of synonyms gives a simple list of
words. Thus, in order to verify whether two words are related, two lists of

* This work has been supported by the Xunta de Galicia project

PGIDT99PXI10502B.

26 SANTIAGO FERNÁNDEZ LANZA

words can be compared. If synonymy is a matter of degree, and the
meaning of a word is represented as the list of its synonyms, the question
now is how to measure the degree of synonymy between two words. The
treatment of natural language in Prolog by means of lists enables us to find
this degree mechanically.

In the context of a dictionary of synonyms it is possible to consider
different aspects related with this theme, which will be borne in mind
throughout this work:
1. The problem of polysemy: Words may have various meanings

depending on the context in use. This means that we are able to
compare each word taking the generic set of its synonyms or only
specific meanings, which are suitable for a particular use. This proposal
appears to be more opportune, since it avoids the interference of other
meanings in the decision of the synonymy of two words when they are
used in a specific context.

2. The reflexivity of synonymy: Dictionaries of synonyms obviously do
not include the trivial case of a word being a synonym of itself when a
meaning is set. Nevertheless, this fact may lead to situations such as
this one: in a dictionary of synonyms a word can appear as the only
synonym of another and this word as the only synonym of the first. If
we compare both words, the intersection of both sets of synonyms is
empty, thus the degree of synonymity measured with the formula given
earlier would be 0, a counterintuitive result. One way of avoiding this is
to include the trivial case of the identical word in the list of synonyms
of a word.

3. The symmetry of synonymy: It is common to attribute the property of
symmetry to synonymy, but if we observe a dictionary of synonyms, in
many cases this property does not hold; i.e., sometimes a word A has
another B in its list of synonyms, but inverse case is not so.

2. Synonymy between words

In the Natural Language Processing tradition [1], we will describe a
Prolog program which calculates the degree of synonymy between the
words of a dictionary of synonyms. The examples are taken from [3].
Measurement is realised meaning by meaning, in such a manner that given
two words A and B, the compiler will set the meaning of A verifying that B
belongs to the list of synonyms of A in that meaning, it will calculate the
degree of synonymy that A possesses with all the meanings of B and will
select the meaning of B whose degree of synonymy is the greatest.

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 27

A dictionary of synonyms can be considered as a database of words
(entries) and lists of words (synonyms) grouped together by meanings. We
will use the following predicate
syn_dic(Word, List_of_synonyms, Meaning)

to represent the information contained in the dictionary. The first argument
of the predicate syn_dic is the dictionary entry, the second the list of its
synonyms and the third, the meanings corresponding to the group of
synonyms. Let us consider an example that includes various input items
from [3]:

syn_dic(fruit,[fruit,crop,harvest,produce,product,yield],1).
syn_dic(fruit,[fruit,advantage,benefit,consequence,effect,outcome,
profit,result,return,reward],2).

syn_dic(crop,[crop,fruit,gathering,harvest,produce,reaping,'season´s_
growth',vintage,yield],1).
syn_dic(crop,[crop,clip,curtail,cut,lop,mow,pare,prune,reduce,shear,
shorten,snip,top,trim],2).
syn_dic(crop,[crop,bring_home,bring_in,collect,garner,gather,harvest,
mow,pick,reap],3).
syn_dic(crop,[crop,browse,graze,nibble],4).

…

The general procedure for calculating the degree of synonymy
between two words consists of the following steps. Given two words A and
B:
1. Take the list of synonyms of A in the first meaning, which we will call

ListA.
2. Check that B belongs to ListA.

2.1. If it does not belong to ListA, carry out step 1 with the following
meaning of A. If all the meanings of A have been checked and the
result is still negative, then A and B are not synonyms.

2.2. If it belongs to ListA, go to 3.
3. Take the list of synonyms of B in the first meaning (called ListB) and

calculate the degree using one of the following formulae:

Jaccard coefficient:

DS=
ListA ListB

ListA ListB

Dice coefficient:

DS=
2.ListA ListB

ListA + ListB

Cosine coefficient:

DS=
ListA ListB

ListA . ListB

28 SANTIAGO FERNÁNDEZ LANZA

Mutual similarity coefficient:

DS=

ListA ListB

ListA
+
ListA ListB

ListB

2

Overlap coefficient:

DS =
ListA ListB

min ListA , ListB()

4. Repeat step 3 with all the meanings of B.
5. Calculate the maximum of the degrees obtained in 4 and its

corresponding meaning. This maximum degree is the degree of
synonymy between A and B.

The predicate synonym calculates the degree of synonymy between
two words:
synonym(A, MA, B, MB, DS, TH, SM)

this predicate can be read as, the word A in the meaning MA is a synonym
of the word B in the meaning MB with a degree DS for the threshold TH

and for the similarity measure SM.
The code is as follows:

synonym(A,X,A,Y,1.0,_,jaccard_coefficient):-
syn_dic(A,Z,X),
X=Y.
synonym(A,MeanA,B,MeanB,DS_MAX,TH,jaccard_coefficient):-
comparable(A,B,MeanA),
findall(GRS,syn_meaning(A,MeanA,B,Mean,GRS,TH,jaccard_coefficient),Li
st1),
findall(Mean,syn_meaning(A,MeanA,B,Mean,GRS,TH,jaccard_coefficient),L
ist2),
max(List2,MeanB,List1,DS_MAX).

synonym(A,X,A,Y,1.0,_,dice_coefficient):-
syn_dic(A,Z,X),
X=Y.
synonym(A,MeanA,B,MeanB,DS_MAX,TH,dice_coefficient):-
comparable(A,B,MeanA),
findall(GRS,syn_meaning(A,MeanA,B,Mean,GRS,TH,dice_coefficient),List1
),
findall(Mean,syn_meaning(A,MeanA,B,Mean,GRS,TH,dice_coefficient),List
2),
max(List2,MeanB,List1,DS_MAX).

synonym(A,X,A,Y,1.0,_,cosine_coefficient):-
syn_dic(A,Z,X),
X=Y.
synonym(A,MeanA,B,MeanB,DS_MAX,TH,cosine_coefficient):-
comparable(A,B,MeanA),
findall(GRS,syn_meaning(A,MeanA,B,Mean,GRS,TH,cosine_coefficient),Lis
t1),
findall(Mean,syn_meaning(A,MeanA,B,Mean,GRS,TH,cosine_coefficient),Li
st2),
max(List2,MeanB,List1,DS_MAX).

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 29

synonym(A,X,A,Y,1.0,_,mutual_similarity_coefficient):-
syn_dic(A,Z,X),
X=Y.
synonym(A,MeanA,B,MeanB,DS_MAX,TH,mutual_similarity_coefficient):-
comparable(A,B,MeanA),
findall(GRS,syn_meaning(A,MeanA,B,Mean,GRS,TH,mutual_similarity_coeff
icient),List1),
findall(Mean,syn_meaning(A,MeanA,B,Mean,GRS,TH,mutual_similarity_coef
ficient),List2),
max(List2,MeanB,List1,DS_MAX).

synonym(A,X,A,Y,1.0,_,overlap_coefficient):-
syn_dic(A,Z,X),
X=Y.
synonym(A,MeanA,B,MeanB,DS_MAX,TH,overlap_coefficient):-
comparable(A,B,MeanA),
findall(GRS,syn_meaning(A,MeanA,B,Mean,GRS,TH,overlap_coefficient),Li
st1),
findall(Mean,syn_meaning(A,MeanA,B,Mean,GRS,TH,overlap_coefficient),L
ist2),
max(List2,MeanB,List1,DS_MAX).

The predicate comparable enables us to verify whether a word is in
the list of synonyms of another one, once the specific meaning of the latter
has been set. Thus
comparable(A, B, MA)

can be read as: word A is comparable with another B in the particular
meaning MA of A.

comparable(A,B,MA):-
 syn_dic(A,X,MA),
 member(B,X).

The predicate member is normally used in the treatment of lists with
Prolog, and indicates if a particular element is a member of a list:
member(Element, List)

In Prolog this can be expressed in the following manner:

member(A,[A|B]).
member(A,[B|C]):-
 member(A,C).

The maximum of the degrees with the corresponding meaning is
calculated by means of the predicate
max(List_of_meanings, Meaning, List_of_degrees, Greatest_degree).

The first argument is a list of meanings, the second the meaning
corresponding to the greatest degree, the third is a list of degrees, and the
fourth the greatest of these degrees.

30 SANTIAGO FERNÁNDEZ LANZA

max([B],B,[A],A).
max([D,E|F],Y,[A,B|C],X):-
 A >= B,
 max([D|F],Y,[A|C],X),
 !.
max([D,E|F],Y,[A,B|C],X):-
 max([E|F],Y,[B|C],X).

The predicate syn_meaning calculates the degree of synonymy for the
meanings of two specific words
syn_meaning(A, MA, B, MB, DS, TH, SM)

It is necessary to define this predicate for all the similarity measures.
1.- Jaccard coefficient:

syn_meaning(A,MA,B,MB,DS,TH,jaccard
_coefficient):-
 not(A=B),
 syn_dic(A,X,MA),
 syn_dic(B,Y,MB),
 union(X,Y,U),
 inter(X,Y,I),
 card(U,NU),
 card(I,NI),
 DS is NI/NU,
 DS >= TH.

3.- Cosine coefficient:

syn_meaning(A,MA,B,MB,DS,TH,cosine_
coefficient):-
 not(A=B),
 syn_dic(A,X,MA),
 syn_dic(B,Y,MB),
 inter(X,Y,I),
 card(I,NI),
 card(X,NX),
 card(Y,NY),
 SQRX is sqrt(NX),
 SQRY is sqrt(NY),
 DS is NI/(SQRX*SQRY),
 DS >= TH.

2.- Dice coefficient:

syn_meaning(A,MA,B,MB,DS,TH,dice_
coefficient):-
 not(A=B),
 syn_dic(A,X,MA),
 syn_dic(B,Y,MB),
 inter(X,Y,I),
 card(I,NI),
 card(X,NX),
 card(Y,NY),
 DS is (2*NI)/(NX+NY),
 DS >= TH.

4.- Mutual similarity coefficient:

syn_meaning(A,MA,B,MB,DS,TH,mutua
l_similarity_coefficient):-
 not(A=B),
 syn_dic(A,X,MA),
 syn_dic(B,Y,MB),
 inter(X,Y,I),
 card(I,NI),
 card(X,NX),
 card(Y,NY),
 SLR is NI/NX,
 SRL is NI/NY,
 DS is (SLR+SRL)/2,
 DS >= TH.

5.- Overlap coefficient:

syn_meaning(A,MA,B,MB,DS,TH,overlap_coefficient):-
 not(A=B),
 syn_dic(A,X,MA),
 syn_dic(B,Y,MB),
 inter(X,Y,I),
 card(I,NI),
 card(X,NX),
 card(Y,NY),
 min(NX,NY,Min),

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 31

 DS is NI/Min,
 DS >= TH.

The predicate union establishes the union of the two lists and has
three lists as arguments:
union(List1, List2, Result)

The code is as follows:

union([],X,X).
union([A|B],Y,[A|Z]):-
 not(member(A,Y)),
 union(B,Y,Z),
 !.
union([A|B],Y,Z):-
 union(B,Y,Z).

The predicate inter establishes the intersection of the two lists and
also has three lists as arguments:
inter(List1, List2, Result)

The code is as follows:

inter([],X,[]).
inter([A|B],Y,[A|Z]):-
 member(A,Y),
 inter(B,Y,Z),
 !.
inter([A|B],Y,Z):-
 inter(B,Y,Z).

The predicate card indicates the number of elements in a list. Its first
argument is a list and the second one is a natural number that corresponds
to the cardinality of the list:
card(List, Cardinality)

The code is as follows:

card([],0).
card([A|B],C):-
 card(B,E),
 C is E + 1.0.

2.1. Verbalisation of the degree of synonymy between words

As has already been seen, the degree of synonymy is expressed as a
real number between 0 and 1. However, to a user a linguistic verbalisation
may be easier to understand than a degree. One immediate and simple
manner of doing this is by using a predicate that is analogous to the one
previously explained, but which instead of giving a degree of synonymy
gives a verbalisation:
syn_verb(A, MA, B, MB, Verb, TH, SM)

32 SANTIAGO FERNÁNDEZ LANZA

where A and B are words, MA and MB are its respective meanings, Verb is
the linguistic label that corresponds to the degree of synonymy, TH is the
threshold and SM is the similarity measure.

syn_verb(A,MA,A,MA,identical_words,TH,SM):-
 synonym(A,MA,B,MB,1,TH,SM).
syn_verb(A,MA,B,MB,Verb,TH,SM):-
 synonym(A,MA,B,MB,DS,TH,SM),
 not(A=B),
 verbal(DS,Verb).

The predicate verbal associates a verbalisation to a particular degree
of synonymy,
verbal(Degree_of_synonymy, Verbalisation)

Its first argument is a degree (real number between 0 and 1) and the
second one is the expression that verbalises this degree. The criterion for
the distribution of the intervals of each verbalisation is arbitrary; the only
thing that is aimed for with this is to establish a reasonable procedure so
that the compiler’s reply be more attractive. To this aim, the following
interval distribution is proposed:
1. All degrees greater than 0 and lower than or equal to 0.25 are

verbalised with the label “very little synonymy”.
2. All degrees greater than 0.25 and lower than or equal to 0.5 with “little

synonymy”.
3. All degrees greater than 0.5 and lower than or equal to 0.75 with “quite

a lot of synonymy”.
4. All degrees greater than 0.75 and lower than or equal to 1 with “a lot of

synonymy”.
The following code enables us to do this:

verbal(Degree,very_little_synonymy):-
 Degree > 0,
 Degree =< 0.25.
verbal(Degree,little_synonymy):-
 Degree > 0.25,
 Degree =< 0.5.
verbal(Degree,quite_a_lot_of_synonymy):-
 Degree > 0.5,
 Degree =< 0.75.
verbal(Degree,a_lot_of_synonymy):-
 Degree > 0.75,
 Degree =< 1.0.

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 33

2.2. Examples of synonymy between words

We can now ask what the degree of synonymy is between two words
belonging to the dictionary, such as “fruit” and “produce”, with the
threshold 0 an for the Jaccard coefficient. A goal of this kind is formulated
in the following manner:
synonym(fruit,Meaning_fruit,produce,Meaning_produce,Degree,0,jaccard_
coeficient).

As is usual in Prolog, the words in capitals are taken as variables that
the program must instantiate on responding. The compiler would respond
with:

Meaning_fruit = 1
Meaning_produce = 7
Degree = 0.625

With the predicate syn_verb this degree would be verbalised as
“quite_a_lot_of_synonymy”.

We will be able to ask which words are synonyms of “fruit” with the
threshold 0 and for the Jaccard coefficient. This goal is formulated as
follows:
synonym(fruit, Meaning_fruit, Y, Meaning_Y, Degree, 0,
jaccard_coefficient).

The compiler answers with all the synonyms of the word fruit
indicating the meanings of both words and the degree of synonymy
between them.

3. Synonymy between sentences

If we conceive synonymy as a question of degree, how does the
substitution of one word for its synonym affect the degree of synonymy of
two sentences? We now attempt to establish some proposals that refer to
this question.

Two sentences are synonyms with a degree of synonymy DS if their
words coincide or are synonyms respectively. When two sentences differ in
two or more words and these are synonyms, the degree of synonymy of
both sentences will be the result of operating the degrees of synonymy of
these words using a t-norm, respectively. In this work, product, minimum
and Lukasiewicz t-norms will be used.

Considering a sentence as a list, which is usual in the treatment of
natural language using Prolog, the predicate syn_sent expresses the
synonymy between two sentences:
syn_sent(Sentence1, Sentence2, Degree_of_synonymy, M1, M2, TH, SM,
TN)

34 SANTIAGO FERNÁNDEZ LANZA

The first two arguments are lists in which two sentences from natural
language are included, the third is the degree of synonymy between both
sentences, the fourth is a list with the words substituted in the first sentence
followed by the corresponding meanings. The fifth argument is the same as
the fourth except that it has the list of the substitutions in the second
sentence. The three last arguments are the threshold, the similarity measure
and the t-norm respectively.

This predicate will be defined for each t-norm:

1. Product:
syn_sent([],[],1.0,[],[],_,_,product).
syn_sent([A|B],[A|D],X,Y,Z,TH,SM,product):-

 syn_sent(B,D,X,Y,Z,TH,SM,product).

syn_sent([A|B],[C|D],Y,[A,Mean_A|W],[C,Mean_C|Q],TH,SM,product):-

 synonym(A,Mean_A,C,Mean_C,Z,TH,SM),

 syn_sent(B,D,X,W,Q,TH,SM,product),

 Y is X*Z,

 Y >= TH.

2. Minimum:
syn_sent([],[],1.0,[],[],_,_,minimo).

syn_sent([A|B],[A|D],X,Y,Z,TH,SM,minimo):-

 syn_sent(B,D,X,Y,Z,TH,SM,minimo).

syn_sent([A|B],[C|D],Y,[A,Mean_A|W],[C,Mean_C|Q],TH,SM,minimo):-

 synonym(A,Mean_A,C,Mean_C,Z,TH,SM),

 syn_sent(B,D,X,W,Q,TH,SM,minimo),

 min(X,Z,Y),

 Y >= TH.

3. £ukasiewicz:
syn_sent([],[],1.0,[],[],_,_,lukasiewicz).

syn_sent([A|B],[A|D],X,Y,Z,TH,SM,lukasiewicz):-

 syn_sent(B,D,X,Y,Z,TH,SM,lukasiewicz).

syn_sent([A|B],[C|D],Y,[A,Mean_A|W],[C,Mean_C|Q],TH,SM,lukasiewicz):-

 synonym(A,Mean_A,C,Mean_C,Z,TH,SM),

 syn_sent(B,D,X,W,Q,TH,SM,lukasiewicz),

 SUM is X+Z-1,

 maxim(0,SUM,Y),

 Y >= TH.

The predicate maxim calculates the maximum of two numbers. It is
defined in the following manner:

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 35

maxim(A,B,A):-

 A>=B,

 !.

maxim(A,B,B).

3.1. Synonymy between sentences setting the meanings

When we use words in a sentence we usually do so with a specific
meaning (except if we are using the language in a different way from the
common usage, e.g., literary use). Although, this is not always the case, the
sentence usually gives us hints about which of the meanings of a particular
word is being used. On other occasions we need other types of
extralinguistic information in order to elucidate this problem.

Various criteria can be put forward for detecting which meaning of
the word is used in a sentence. These criteria should not be too strict as they
are not applicable to all cases. Some of these may be the following:
1. If in the same sentence there are two words that are synonyms

respectively in particular meanings, it is very probable that these
meanings will be the ones used in the sentence.

2. Very often, certain words, which do not need to be synonyms of a
given one, indicate that this word is being used in a particular meaning.
For example, the word “bank” in English has various meanings, such as
“financial institution”, “lateral inclination”, “ground beside a river”,
etc.; but if in a particular sentence it appears together with words such
as “money”, “cheque”, “cash”, “loan”, etc. this indicates that “bank” is
being used in the first of the meanings.

3.1.1. First criterion for setting meanings

In order to deal with the first criterion we will use the following
predicate:
synonym_sent(Sentence1, Sentence2, Degree_of_synonymy, M1, M2, TH,
SM, TN)

This predicate is formed by the same arguments as syn_sent, but
taking into account that the existence of certain words in a sentence may set
the meanings of others.

The code is as follows:

synonym_sent(A,B,GR,Z,Y,TH,SM,TN):-
 meaning_sent_sent(A,A,Z),
 syn_sent(A,B,GR,Z,Y,TH,SM,TN),
 not(Z = []),

36 SANTIAGO FERNÁNDEZ LANZA

 not(Y = []).
synonym_sent(A,B,GR,W,Y,TH,SM,TN):-
 meaning_sent_sent(A,A,Z),
 Z = [],
 syn_sent(A,B,GR,W,Y,TH,SM,TN),
 not(W = []),
 not(Y = []).

The predicate meaning_sent_sent is the one which enables us to
verify whether all the words of one sentence can be associated to all those
of another one. Eventually, in our case, this second sentence will be the
same as the first one, although this may not be the case if we wish to set the
meanings of the words of one sentence with regard to other sentences
different from the one given. The predicate has three lists as arguments:

meaning_sent_sent(Sentence1, Sentence2, List_of_meanings)

the first two lists include two sentences (eventually the same one) and in
the third one words followed by the set meanings.

The code is the following:

meaning_sent_sent([],X,[]).
meaning_sent_sent([A|B],X,[R,S|Y]):-
 meaning_word_sent(A,X,Z),
 not(Z=[]),
 remove_rep(Z,[R,S]),
 meaning_sent_sent(B,X,Y),
 !.
meaning_sent_sent([A|B],X,[A,K|Y]):-
 meaning_word_sent(A,X,Z),
 not(Z=[]),
 remove_rep(Z,W),
 not(card(W,2)),
 meaning_sent_sent(B,X,Y),
 !.
meaning_sent_sent([A|B],X,Y):-
 meaning_sent_sent(B,X,Y).

Given a word and a sentence, the predicate meaning_word_sent, gives
a list of the meanings of the word that result from associating it with the
words in the sentence. The result is the initial word followed by the
meaning used in the association, this being repeated as many times as
associations have been made. The arguments of this predicate are one word,
one list in which we will include a sentence, and another list which will
include the word with the meanings resulting from the associations realised.
meaning_word_sent(Word, Sentence, List_of_meanings)

meaning_word_sent(A,[],[]).
meaning_word_sent(A,[B|C],[A,MA|E]):-
 not(A=B),
 associate(A,B,MA),

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 37

 meaning_word_sent(A,C,E),
 !.
meaning_word_sent(A,[B|C],D):-
 meaning_word_sent(A,C,D).

When in the sentence there are various words associable with the
first one for the same meaning, in the last list the meaning will appear as
many times as associations have been made. In order to avoid repetition of
meanings, we will use the predicate remove_rep, the arguments of which are
lists:
remove_rep(List_with_repetitions, List_without_repetitions)

The first argument is the list with the repeated meanings, and the
second is the list with no repeated meanings.

remove_rep([],[]).
remove_rep([A,MA,B,MB|C],[B,MB|D]):-
 [A,MA]=[B,MB],
 remove_rep([B,MB|C],[B,MB|D]),
 !.
remove_rep([A,MA|C],[A,MA|D]):-
 remove_rep(C,D).

The predicate associate used in meaning_word_sent enables the
program to associate words. The arguments of this predicate are two words
and a meaning corresponding to the first word:
associate(A, B, MA)

associate(A,B,MA):-
 synonym(A,MA,B,MB,DS,0,_);
 synonym(B,MB,A,MA,DS,0,_).

3.1.2. Second criterion for setting meanings

In order to report on the second of these criteria that set the meanings
in a sentence, it is necessary to create another database that associates
particular words with other ones to set the meanings. One way could be to
consider that words such as “farmer” may indicate that the first meaning of
“fruit” is being used, and words such as “enjoy” may indicate that the
second one is being used. We could then create a new database clauses like
the following:

associate(fruit,farmer,1).
associate(fruit,farmers,1).
...
associate(fruit,enjoy,2).
associate(fruit,enjoyed,2).
...

38 SANTIAGO FERNÁNDEZ LANZA

It is clear that any conjugation of the verb “enjoy” in any tense,
mood, number and person will be valid. The predicates remove_rep,
meaning_word_sent, meaning_sent_sent and synonym_sent are analogous to
the ones defined for the previous criterion. The predicate associate defined
there must be substituted for the above-mentioned database.

3.2. Verbalisation of the degree of synonymy between sentences

As was carried out for synonymy between words, we can define a
predicate that instead of supplying a numerical degree of synonymy, gives
a verbalisation of it. This is the following:
synonym_sent_verb(Sentence1, Sentence2, Verbalisation, M1, M2)

This predicate is made up of two list sentences, the verbalisation of
the degree of synonymy between these sentences, and two lists that contain
the set meanings in the first and the second sentence, respectively.

The code is as follows:

synonym_sent_verb(A,B,Verb,W,Y,TH,SM,TN):-
 synonym_sent(A,B,DS,W,Y,TH,SM,TN),
 verbal(DS,Verb).

3.3. Examples of synonymy between sentences

Given a threshold, a similarity measure and a t-norm, we could ask
which sentences are synonyms of “Our fruit or crop is the best”, This goal
is formulated as follows:
synonym_sent([our,fruit,or,crop,is,the,best],B,Degree,M1,M2,0,jaccard_co
efficient,product).

The program sets meaning 1 of “fruit” and meaning 1 of “crop” due
to both words appearing in the sentence and being associable in these
meanings. The compiler answers with all the synonym sentences indicating
the degree of synonymy and the meaning of the substituted words.

Using the code defined for the second criterion we can attempt the
following goal:
synonym_sent([he,enjoyed,the,fruit,(s),of,the,previous,years,work],B,
Degree,M1,M2,0,jaccard_coefficient,product).

In this case, the compiler will set meaning 2 of “fruit”.

4. Conclusions

We have proposed a Prolog program that analyses the degree of
synonymy between the words of a dictionary of synonyms and how the

PROLOG FOR AUTOMATIC PROCESSING OF SYNONYMY 39

substitution of synonymous words in a sentence may affect the degree of
synonymy between the original sentence and that in which the word has
been substituted.

As frequently occurs when dealing with problems relating to natural
language, these matters have a domain so extensive that may provoke
fluctuations regarding the results offered in this work. Other functions may
be used to measure the degree of synonymy; new criteria to set the
meanings in synonymy between sentences or other interval distributions for
verbalisation may be adopted. In any case, synonymy is a theme that has
been studied relatively little in the setting of Prolog and the aim of this
work has been to explain only certain aspects relating to its computational
processing.

University of Santiago de Compostela, sflanza@usc.es

REFERENCES

[1] C O V I N G T O N, M.A., Natural Language Processing for Prolog

Programmers, Prentice-Hall, 1994.
[2] LÓPEZ DE MÁNTARAS, R., TRILLAS, E., “Towards a measure of the

degree of synonymy”, in Sánchez, E. (ed.), Fuzzy Information,

Knowledge Representation and Decision Analysis, Pergamon Press,
1984.

[3] MCLEOD, W.T. (ed.), The New Collins Dictionary and Thesaurus in

One Volume, Collins, 1989.
[4] SPARCK JONES, K., Synonymy and Semantic Classification, Edinburgh

U. P., 1986.

