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A SURVEY OF NATURAL DEDUCTION SYSTEMS FOR

MODAL LOGICS

Andrzej INDRZEJCZAK

Abstract
  The paper contains an exposition of standard ND-formalizations for modal
logics. For the sake of simplicity, it is limited to propositional monomodal
logics because focus is on methods not on logics. Some of the discussed ap-
proaches, however, may be easily extended to first order modal logics of differ-
ent sorts (see [16]) or to multimodal logics (e.g. for temporal logics see [17]).
Natural Deduction is understood in the strict sense, explained below; neither
Gentzen Sequent Calculus, nor Tableau Systems belong to that group. Moreo-
ver, some ND-systems with generalized apparatus, like [2] or [3] are also omitted
in this survey. There are four basic approaches to modality via ND-
formalization, which are compared and evaluated with respect to their general-
ity: modalization of assumptions, modalization of reiteration rule, modalization
of rules, application of modal assumptions. We focus on practical matters, espe-
cially on the applicability of discussed approaches, the only exception is the
discussion of independent rules for necessity and possibility in the last section.

1. Preliminaries
1.1. Logics

We will use standard language <¬, →, ∧, ∨, ⊥, >. For the most
part we will use the possibility operator  as a defined shortcut for
¬ ¬. The exception is the last section where  is rather used as basic.
ϕ, ψ refer to any formula, Γ, ∆, Π, Σ to any set of formulae, usually
finite. ¬Γ, Γ, Γ mean, respectively, {¬ϕ:ϕ∈Γ}, { ϕ:ϕ∈Γ},
{ ϕ:ϕ∈Γ}, and ∧Γ, ∨Γ a conjunction/disjunction of all formulae in Γ.

-formula is any formula prefixed with  or ¬ , and -formula by ,
or ¬ ;  M-formula is any - or -formula.

Let us remind that propositional monomodal regular logic is any
logic L which satisfies the following conditions:

L contains the set of theses of CPC (Classical Propositional Cal-
culus)
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Axiom K) belongs to L i.e. (ϕ → ψ) → ( ϕ → ψ) ∈L
L is closed with respect to MP) and C) i.e.
if  {ϕ→ψ, ϕ} ⊆ L ,  then   ψ ∈ L, and
if  ψ→ϕ ∈ L , then   ψ→ ϕ ∈ L
The weakest regular logic is usually called C , if we replace C) by a

stronger rule GR) (Gödel’s Rule) i.e.
if   ϕ ∈ L ,  then   ϕ ∈ L

we obtain the weakest normal logic, usually called K.
The extensions of C  (or K) are obtained by addition of extra axi-

oms. The most popular that will serve as examples, are displayed below:
D) ϕ→ ϕ
T) ϕ→ϕ
4) ϕ→ ϕ
B) ϕ→ ϕ
E) ϕ→ ϕ
G) ( ϕ→ϕ)→ ϕ

Since logics are build by addition of axioms from this list to C  (or
K) we will give them names by concatenation of names of axioms e.g. K
+ B) + 4) will be simply noted as KB4. But one should notice that some
of them have traditional names which we shall preserve. These are:

D = KD
T = KT
G = K4G
B = KTB
S4 = KT4
S5 = KT4E = KT4B = KTE
Although we do not need to remind Kripke semantic for modal

logic, by obvious correspondence to semantic conditions we will also use
some names for distinctive groups of logics. All logics containing T) will
be called reflexive (and irreflexive otherwise), containing B), symmetric
(oth. nonsymmetric), containing 4), transitive (oth. nontransitive).

Instead of saying that ϕ∈L, we may put L (subscript usually will
be omitted when not necessary), which means that ϕ is a thesis of L (has
a proof in L). Provability is characterised as follows Γ  ϕ iff ∧Γ→ϕ.
Perhaps it is not the most popular definition of provability in axiom
systems, because it is assumed that C) and GR) was not used to elements
of Γ, but it is the most natural definition for ND-systems because it in-
volves deduction theorem in ordinary shape; such relation is sometimes
called truth consequence relation (see e.g. [2]). Items of the form Γ  ϕ
(with Γ possibly empty) will be called sequents and they clearly corre-
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spond to elementary inferences derivable in the respective logic. More
general notion which is of great interest is the notion of a sequent rule
of the form: if S1,…, Sn, then Sn+1, where S refers to any sequent. The
example of a sequent rule is in fact GR), which should be written: if  ϕ ,
then  ϕ. The other important sequent rule is the rule:

)  if  Γ  ϕ ,  then   Γ  ϕ
which is satisfied, or better admissible, in all normal logics and also in all
regular ones but with proviso that Γ≠∅. Clearly each sequent corre-
sponds to some sequent rule in the manner expressed by the lemma:

Lemma 1: if  {ϕ1,...,ϕn} L  ψ,    then  if   Γ1 L ϕ1, ..., Γn L ϕn , 
   then  Γ1,...,Γn L  ψ

which means that each rule derivable in L is also admissible in L; proof is
obvious, by n applications of the cut-rule. In the following we will use
the convention that if the sequent has some name we will use the same
name but with “S” in superscript, for corresponding sequent rule e.g. ∧E)
will be a name for a sequent expressing elimination of conjunction and
∧Es) will be a name for suitable sequent rule. Obviously all theses, and
more generally, sequents, derivable in some logic are derivable in all
extensions of that logic. This is not in general true with respect to se-
quent rules; something admissible in a logic is not necessarily admissible
in some extension but, fortunately, all sequent rules presented in this
paper behave very nice in this respect, so we will simply state them as
admissible for some logic and all its extensions that we consider.

1.2. Natural Deduction
It seems that no precise definition of ND-systems has been of-

fered so far. The term is often used in a very broad sense so that it cov-
ers almost everything which is not an axiom system; here it is taken in a
narrow sense. ND-system is meant as the one in which there are some
rules for entering assumptions into a proof and also for discharging
them. There are no (or, at least, very limited set of) axioms, because
their role is taken over by the set of rules for introduction and elimina-
tion of constants; it means that elementary inferences instead of for-
mulae are taken as primitive. Genuine ND-system admits a lot of free-
dom in proof construction, both direct and indirect proofs are possible,
one can build more complex formulae, or decompose them, as respec-
tive introduction/elimination rules allow. This flexibility is significant
for ND-system in contrast to Gentzen Sequent Calculus, where proofs
are cumulative, due to the application of only introduction rules, or to
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Tableau Systems, where proofs are always indirect with only elimination
rules being applied.

Many existing systems satisfy this characteristics but differ in
many other respects. The most important features, for us, are: proof
construction and basic items, for which rules of the system are defined.
We will consider systems where basic items may be formulae or sequents,
accordingly we divide ND-systems on F-, and S-systems. Proof construc-
tion may be linear or in a tree form, hence we can divide ND-systems on
L-, and T-systems. The latter distinction is not important for S-
systems, but it really matters in F-systems, because if a proof is linear we
may use the same formula many times, hence we must have some de-
vices to cancel the part of a proof which is in the scope of an assump-
tion already discharged. Otherwise we could prove anything. This is not
possible in T-proofs because we are operating not on formulae but on
their occurrences; premises of a rule must always be displayed directly
over the conclusion, so we cannot use something which depends on dis-
charged assumption. Further in the paper we will rather concentrate on
L-systems because they are of practical interests. F-L-systems will be
called systems in Ja kowski format (see [20] for the first system of this
sort), S-systems will be called systems in Gentzen format (see [13] for
the first S-T-system, earlier in [12] Gentzen devised the first F-T-
system; for more about these matters consult [19]).

Any type of a Deductive system, including ND-systems, may be
characterised by listing of all primitive sequents and sequent rules of this
system. These two nonempty sets build up the content of the system, a
theoretical level on which we can compare different systems. The con-
tent of a basic F-system and S-system for CPC is listed below:

∧Ι) ϕ ,ψ  ϕ∧ψ
∧Ε) ϕ∧ψ  ϕ ϕ∧ψ  ψ
∨Ι) ϕ  ϕ∨ψ ψ  ϕ∨ψ
∨Ε) ¬ϕ , ϕ∨ψ  ψ
→Ε) ϕ , ϕ→ψ  ψ
→Ι) if Γ ,  ϕ  ψ , then    Γ  ϕ→ψ
¬Ε) if  Γ , ¬ϕ  ⊥ , then    Γ  ϕ
⊥Ι) ϕ , ¬ϕ  ⊥   ⊥Ε)  ⊥  ϕ

Α) ϕ  ϕ
W) if  Γ  ψ  ,  then   ϕ, Γ  ψ
∧Ιs) if  Γ  ϕ  and   ∆  ψ ,  then  Γ , ∆  ϕ∧ψ
∧Εs) if  Γ  ϕ∧ψ   , then   Γ  ϕ  or   Γ  ψ
∨Ιs) if  Γ  ϕ  ,  then    Γ  ϕ∨ψ  or   Γ  ψ∨ϕ
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∨Εs) if  Γ  ϕ∨ψ  and   ∆  ¬ϕ  ,  then  Γ , ∆   ψ
→Εs) if  Γ  ϕ   and   ∆  ϕ→ψ  ,  then    Γ, ∆  ψ
→Ι) if  Γ, ϕ  ψ , then    Γ  ϕ→ψ
¬Ε) if  Γ, ¬ϕ  ⊥ , then   Γ  ϕ
⊥Ιs) if  Γ  ϕ   and  ∆  ¬ϕ   ,  then   Γ, ∆  ⊥

The content of a system is a base for soundness proofs for respec-
tive formalizations. One can easily check that above rules are sound in
CPC if we replace by  , the sign of entailment. All the rules defined
further for modal logics may be easily checked in this way. The content
is not yet the full characteristics of a system. There is also a level of
representation which refers to practice. It is a set of instructions of how
to build a proof, apply rules and so on. In case of Ja kowski format there
is also a need for additional devices to show that some part of a proof is
not in force, because its assumption is discharged. There are many
known representations, we may call them variants, in what follows we
will choose a variant due to Kalish and Montague [21] as a representa-
tion of Ja kowski format and a variant due to Suppes [26] as a represen-
tation of Gentzen format. There is no place for detailed exposition,
hence we will restrict ourselves only to the most important properties
of both variants.

In general in ND-system, on the level of representation we have
at least two kinds of rules: rules of inference and rules of proof construc-
tion (or shortly proof rules). This division is independent of that for
sequents and sequent rules on the level of content; although in F-systems
sequents are inference rules and sequent rules are proof rules, in S-system
some sequent rules are rules of inference and some proof rules. Moreo-
ver, we have usually additional types of rules as we shall see in the sys-
tem of Kalish and Montague, from now on called K&M. The special
feature of this system is that we have also two different kinds of lines in
a proof:
a) usable lines, that contain premises, assumptions and conclusions of
applied rules;
b) show lines  displaying formulae that one attempts to prove; these are
of the form “Show: ϕ”. Show lines are present in a proof only tempo-
rary, when we succeeded in a proof of ϕ by some method its line changes
into usable line. Accordingly, we will call all formulae displayed in show
lines as show-formulae and all other as usable-formulae.

In K&M a proof of ϕ starts with a show line for this formula as a
main goal and during the proof construction one can enter as many
show lines as wanted, thus dividing the process of proving into the reali-
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zation of many simpler subgoals. We can say that every show line opens
k-degree derivation (k>0) and if the goal of this derivation is realized its
show-formula becomes usable-formula of k-1 degree (i.e. outer) deriva-
tion. In such a case we cancel the prefix “Show” and close the whole
derivation of k-degree in a box. Proof is finished if the first show line is
cancelled and the whole proof below it (a derivation of 1-degree) is
boxed. There are three proof rules that allow for closing a derivation:
[Dir]: Let ϕ be a show-formula of k-degree derivation, then we can close
this derivation provided ϕ has appeared as a usable-formula in this deri-
vation.
[Cond]: Let ψ→ϕ be a show-formula of k-degree derivation, then we
can close this derivation provided ϕ has appeared as a usable-formula in
this derivation.
[Red]: Whenever ⊥ has appeared as a usable-formula in this derivation
(in this case the shape of a show-formula is of no importance).
Schematically:

i-j

k

:
Γ
:
Show:ϕ [Dir,n]

i-j

k

:
Γ
:
Show:ϕ→ψ [Cond,o]

l-m

n

Γ’
:
:
ϕ     

R)i-j

i-m

k+1
m-n

o

(ϕ)
Γ’
:
ψ

assum.
R)i-j

k+1, m-n

i-j

            k

:
Γ
:
Show:ϕ [Red,o]

      k+1
      m-n

   o

(¬ϕ)
Γ’
:
⊥

 assum.
  R)i-j

 k+1, m-n

Remark 1. The formulation of rules forbids closing of a derivation of k-
degree if there are some show lines in this derivation because each of
them enters a subderivation of a degree>k, hence if the formula required
to closing a derivation is in their scope it is not an usable formula of k-
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degree derivation. Hence each initiated subgoal must be realized before
we finish the whole proof.

Assumptions in K&M may be entered optionally, so on the sche-
mas they are in brackets. They are always the first lines of a derivation:
a) if the last show-formula is ϕ→ψ, then we may add ϕ as a conditional
assumption of this derivation;
b) if the last show-formula is ϕ, then we may add ¬ϕ as an indirect as-
sumption of this derivation.

Γ’ on the above schemas displays the usable-formulae from Γ that
were transported from outer derivation of k-1 degree to k-degree deriva-
tion by reiteration rule R). In case of CPC this rule simply transports
formulae without any restriction from open derivation of some degree
to each open derivation of higher degree. Of course, the reverse direc-
tion and any moves from closed derivation are forbidden. The very im-
portance of this rule in the context of modal logics will become evident
in the next section.

All inference rules of K&M are simply sequents listed in the con-
tent of any F-system.

In S-system we have for each formula in succedent a record of its
assumptions in the antecedent of a sequent, hence there is no need for
some bookkeeping devices blocking forbidden deductions. One should
notice that all the introduction and elimination rules operate not really
on sequents but on their succedents. The only operation being made on
antecedents is addition and subtraction of formulae. It allows for some
simplification which is used in Suppes variant; we can get rid with the
rewriting of all sequents, replacing formulae in antecedents by the num-
bers of lines where they have appeared for the first time as assumptions
(justified by rule A)). In the next section we will see an example of a
proof in Suppes’ variant for Gentzen format.

Remark 2. One should notice that our characterisation is limited to
something which may be called a standard ND-system in the spirit of the
fathers of these systems: Ja kowski and Gentzen. In what follows we
compare only such ND-formalizations of modal logic that are based on
this standard. But there are many interesting generalizations of ND-
systems that sometimes allow for some extra results see e.g. [2], where
different consequence relations are manipulated in one system, or [3]
for ND-system defined on labelled formulae. But all these non-standard
approaches are beyond this study which is sufficiently long.
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2. Necessity based approaches
2.1. Modalized assumptions

The first approach to the extension of ND-techniques to modal
logics was based on the concept of modalized assumptions. It is due to
Curry [8] for S4, [5] contains system for S4 and S5; see also [23] and
[7]. The idea is that the application of Ι) to formula is dependent of
the shape of assumptions of the formula in question. It should be limited
to cases where the set of assumptions is empty or consists only of mo-
dalized assumptions. In the first case it is simply an application of GR),
in the second we must check whether all the assumptions satisfy suitable
conditions.

The advantage of this approach is its independence of the basic
format; Curry and Prawitz [23] have used Gentzen T-F-format, Bork-
owski & S upecki [5] Ja kowski format. In fact, any variants of Gentzen
format seem to be better prepared to this task because all actual assump-
tions of each formula are displayed. In Ja kowski format a formula may
be put in the scope of assumptions, on which it is not in fact dependent,
hence the control whether Ι) may be applied is harder. This is the rea-
son why in this section we will use Gentzen format in Suppes variant for
examples.

The serious drawback of this system is the lack of generality. It is
not incidental that it is devised only for S4 and S5; it is certainly not
obvious how to extend this approach to other logics.

In basic system modalized formulae are defined for S4 as any
-formulae, and for S5, additionally as any -formulae. Hence we have

the following rules Ι):
if Γ  ϕ  , then Γ  ϕ , for S4 and
if ∆ , Γ  ϕ ,   then ∆ , Γ  ϕ , for S5

and the same rule Εs) for both logics:

if Γ  ϕ ,  then  Γ  ϕ

The above definition of modalized formulae gives simplified ac-
count of rules but, unfortunately, forces us to construct unnecessarily
long and complicated proofs; here is an example:
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{1} 1 ϕ∧ ψ Α)
{1} 2 ϕ ∧Εs),1

{1} 3 ψ ∧Εs),1
{4} 4 ϕ Α)
{4} 5 ϕ Εs),4
{6} 6 ψ Α)
{6} 7 ψ Εs),6
{4,6} 8 ϕ∧ψ ∧Ιs),5,7
{4,6} 9 (ϕ∧ψ) Ι),8
{4} 10 ψ→ (ϕ∧ψ) →Ι),9

11 ϕ→( ψ→ (ϕ∧ψ)) →Ι),10
{1} 12 ψ→ (ϕ∧ψ) →Εs),2,11
{1} 13 (ϕ∧ψ) →Εs),3,12

14 ( ϕ∧ ψ)→ (ϕ∧ψ) →Ι),13

The problem illustrated here is not only of practical nature, it has
also some important theoretical aspect which we describe briefly.
Prawitz [23] has proved the so called normalization theorem for many
logics in ND-formalization. It shows that any ND-proof may be trans-
formed into some normal form, which is the most economical form of
the proof. In a proof in normal form first one applies elimination rules
to assumptions, and then introduction rules. Hence, formulae are first
decomposed (simplified), then mixed again in a suitable order and a
theorem is derived in a very direct way, without unnecessary transfor-
mations. Prawitz’ theorem is for ND the counterpart of a famous Gen-
tzen’s Cut-elimination theorem. The characteristic feature of proofs
that are not in normal form is the presence of the so called maximal
formulae which are conclusions of some introduction rules, and then
they are used as premises for elimination rules, applied to the same con-
stant. It means that compounding some formula precedes decomposing,
which makes proof longer and more complicated. In the above example
maximal formulae are present in lines 10 (12) and 11. Unfortunately,
not all proofs in S4 and S5 may be transformed into normal form in
this ND-system. Prawitz proposed the second variant where the defini-
tion of modalized formulae (MF) is more liberal; for S4:

a) ⊥ and ϕ, for any ϕ,  belong to MF;
b) if ψ and ϕ belong to MF, then ψ∧ϕ and ψ∨ϕ also belong to MF.
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For S5 it is necessary to add in a) ϕ, and in b) ψ→ϕ; equiva-
lently, and simpler, one can define as MF for S5 any formula where
each variable is in the scope of a modal functor. Admissibility of these
rules is justified by the following:

Lemma 2. If ϕ is modalized with respect to S4 (S5), then ϕ → ϕ ∈
S4 (S5).

Proof, by induction on the length of ϕ , in [23].

The latter definition allows to construct a proof for our example
in normal form because the assumption in line 1 is a modalized formula.
Unfortunately, this variant does not satisfy normalization theorem ei-
ther. Notice that if in S4(S5) Γ  ϕ, where Γ contains only modalized
formulae, then also ψ, Γ  ϕ, where ψ is not MF, but then ∧{ψ}∪Γ 

ϕ; obviously ∧{ψ}∪Γ is not modalized according to our definition,
hence the proof of ϕ on its basis requires some maximal formulae
again.

Remark 3. Prawitz [23] presented also ND-systems for S4 and S5 which
satisfy normalization theorem but these systems are of rather different
sort. It is admissible in them to apply Ι) to formula based on any as-
sumption, on condition that there are some modalized formulae in the
proof connecting these assumptions and a formula in question. In fact, it
is rather a variant of Fitch’s approach described in the next paragraph.
It is also of no practical importance because it only shows what to check
in a completed proof, not how to construct it.

2.2. Modalization of Reiteration Rule
Fitch [9] and [10] is the author of the next, and probably the

most popular approach. His system is not universal, in the sense that it
is not suitable for Gentzen format; some variant of Ja kowski format is
presupposed because it is essential in this approach to separate parts of
the proof. We will present it in the K&M representation. In ND-system
for CPC the reiteration rule R) is not specially limited; one can put any
formula from open derivation of k-degree to open derivation of any
higher degree. In case of modal logic, R) should be limited because a spe-
cial category of derivations is added, namely strict derivations. If sub-
derivation of k-degree is strict, then only special sort of formulae from
outer derivation may be transported. The logic in question decides what
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kind of formulae is admissible. The idea is that one can obtain
ND-formalizations for different logics only by modelling the set of suit-
able formulae, keeping all the inference and proof rules invariant.

Despite the limitation to Ja kowski format, Fitch’s solution has
one unquestionable advantage - the scope: [9] contains only ND-system
for T and S4, [10] has counterparts for some deontic logics, [25] ex-
tends this formalization further, finally in [11] one can find uniform
formalization for many regular and normal logics. It is generalized even
further, for many relevance logics [1], conditional logics [27] and tem-
poral logics [17]. These are only some examples of application of
Fitch’s idea.

The rule Ε) is a sequent ϕ  ϕ,  and it is added only to reflexive
logics. To the rules for closing a derivation we must add the rule:

[Nec]: Let ϕ be a show-formula of k-degree derivation, then we can
close this derivation provided ϕ has appeared as a usable-formula in this
derivation and there is no indirect assumption ¬ ϕ under the show-line.

We have to modify also reiteration rule:

R): Let Γ be the set of usable-formulae of k-degree derivation and ϕ
belongs to Γ, then ϕ may be added to k+1-degree derivation if either
a) the show-formula opening k+1-derivation is not of the form ψ,
or
b) the first usable-formula of this derivation is an indirect assumption.
If neither a) nor b) is satisfied, then ϕ may be added provided ϕ belongs
to Γ*, where Γ* ⊆ Subfor( Γ ) .

Γ* is defined for some logics as follows:

a) {ϕ : ϕ∈Γ}, for all logics
b) { ϕ : ϕ∈Γ}, for all transitive logics
c) { ϕ : ϕ∈Γ}, for all symmetric logics
d) { ϕ : ϕ∈Γ}, for symmetric and reflexive logics
the sum of Γ* a) and b) for transitive and irreflexive logics like K4 and
its irreflexive extensions (like G)
the sum of Γ* b) and d) in case of S5
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The rule [Nec] is a counterpart of Ι) rule in original Fitch sys-
tem. In the system representation [Nec] and R) together are the coun-
terpart of the rule Ι) from the content level:

if  Γ*  ϕ ,  then  Γ  ϕ .

This is illustrated by the following scheme:

i-j

k

:
Γ
:
Show: ϕ [Nec,n]

l-m

n

Γ*
:
ϕ

R)i-j

i-m

Informally this rule can be read: if ϕ is derivable in derivation of
k+1-degree based on assumptions in Γ* ⊆ Subfor( Γ ), then ϕ has a
proof of k-degree based on Γ. Admissibility of such a rule is easily estab-
lished for each logic in question with the help of our table for Γ*. In
case of regular logics one should add to [Nec] a condition to the effect
that subderivation of k+1-degree may be closed by this rule if at least
one usable-formula of k-degree proof is a -formula. Fitting [11] in his
formalization for regular logics used a different but equivalent solution;
instead of [Nec] he proposed a rule based on the principle:

if  Γ*  ϕ∨ψ , then   Γ ϕ∨ ψ .

Remark 4. Rules [Nec] and R) may be significantly simplified. First, one
can eliminate from K&M both [Red] and the rule for entering indirect
assumptions, because these rules are not necessary in the system, where
we have two additional inference rules:

MT) ϕ → ψ, ¬ψ  ¬ϕ and
DN) ϕ  ¬¬ϕ , ¬¬ϕ  ϕ

The lack of [Red] and indirect assumptions forces us only to the
more elaborate proof-constructions. In so modified system both [Nec]
and R) may be formulated as follows:
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[Nec]’ Let ϕ be a show-formula of k-degree derivation and has ϕ ap-
peared as a usable-formula in it, then we can close this derivation, pro-
vided all its usable-formulae justified by R) belong to Γ*.

R)’ Let Γ be the set of usable-formulae of k-degree derivation and
Γ*⊆Subfor( Γ), then we may add to k+1 derivation either:
a) ϕ∈Γ* , if show-formula of this derivation is -formula,
or
b) ϕ∈Γ  .

Even if [Red] and indirect assumptions are kept intact, both rules
can be simplified in case we formalize reflexive logics, so we can use
[Nec]’ and

R)” Let Γ be the set of usable-formulae of k-degree derivation and
Γ*⊆Subfor( Γ), then we may add to k+1 derivation either a) ϕ∈Γ* or
b) ϕ∈Γ .

This simplification is due to the fact that although in case of
[Nec]  R) must be limited to Γ*, then in case of other rules of closing a
derivation both Γ and Γ* are admissible in reflexive logics, because for-
mulae from Γ* may be inferred by the application of admissible infer-
ence rules. Also the condition that indirect assumption should not be
present in the derivation to be closed by [Nec] is not needed because in T
and its extensions treated here one can prove:

if   Γ*, ¬ ϕ  ϕ , then Γ  ϕ .

Our primary formulation, despite the complications in the defini-
tion of R) has one serious advantage. All the necessary limitations are
put as conditions to be satisfied before we apply the rule, hence we do
not need to control finished proof if there are some mistakes. Simpler
formulations, often found in literature, usually require some control of
correctness after the proof is completed.

Remark 5. The drawback of this formalization is the lack of any rule
Ε) for logics weaker than T; in case of D one can use in this role a

sequent D) ϕ  ϕ, but it is an ad hoc solution. Providing the defini-
tion of Γ* for K, it is possible to define R) for all nonstrict derivation
once, and for [Nec] to define R) for each logic separately as a kind of
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Ε). This solution has also some disadvantages; e.g. in K4,  is not only
eliminated but also the whole -formula is put again.

A different solution is possible, at least for some irreflexive logics,
if we consider some obvious variants of Ε). For example:

Ε ) ϕ  ϕ , for any -formula ϕ
Ε ) ϕ  ϕ , for any -formula ϕ
Ε ) ϕ  ϕ , for any M-formula ϕ

Ε ) may be added to KE and its extensions, Ε ) to K4D,
which implies that Ε ) is a suitable rule for K4ED. In this way, at
least some irreflexive logics have Ε) of some sort, but it should be
noticed that all these rules are in fact derivable in basic formalization,
what is more, they cannot replace the rule D) in KD4 or KDE. The ex-
ception is KD4E, a very important epistemic logic; instead to replace in
DN-S5 Ε) by D), one can use Ε ), which is simpler and more natu-
ral. Proofs of K), 4), 5) run like in DN-S5, it is enough to show that D)
is also provable; for shortcut we will use secondary rule R5) ϕ  ϕ,
which is obviously derivable either.

1  Show: ϕ → ϕ [Cond,12]
2
3

ϕ
Show: ϕ

assumption
[Red,4,8]

4
5
6
7
8

¬ ϕ
¬ϕ

¬ϕ
ϕ

Show: ϕ

assumption
Def.,4
R5),5
R),2
[Nec,11]

9
10
11

¬ϕ
ϕ

ϕ

R) (K),6
R) (K),7
¬Ε),9,10

12 ϕ Ε ),3

Remark 6. Because in this paper we consider only some limited group of
logics for which the Fitch’s approach works quite well, one can be inter-
ested in its real scope. Hawthorn [14] claimed that modification of R),
works well only for those modal logics which are axiomatizable with the
help of formulae of the kind σϕ → δϕ , where σ and δ are finite
strings of  and  . It is not true however; [17] contains the definition
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of  Γ*, for many temporal logics, axiomatized by formulae of different
shape. Also some considerations on additional devices allows to extend
this kind of ND-formalization. By the way of example the adequate
system for G may be obtained taking DN-K4 and an additional rule for
adding modal assumption:

c) if the last show-formula is ϕ, then we may add ϕ as a modal as-
sumption of that derivation.

Closing by [Nec], with this additional device is justified in G be-
cause this logic satisfies the condition:

if  Γ*, ϕ  ϕ ,     then    Γ  ϕ .

Remark 7. The definition of Γ* may be simplified in some cases because
it is redundant. B and S5 can serve as examples. Let us define Γ*(B) as
{ ϕ:ϕ ∈ Γ} and Γ*(S5) as { ϕ: ϕ ∈ Γ}. Admissibility is obvious, so it
is enough to prove sufficiency of these definitions. Provability of MP),
RG) and T) is intact, B) is still derivable trivially with this Γ* in both
logics. Notice that in both logics we have also secondary inference rule:

RB)  ϕ  ϕ , the proof of which is obvious, and Ι)  ϕ  ϕ . Below
we present a proof of K) in DN-B, with weakened R):

1 Show: (p  → q) → ( p → q) [Cond,3]
2
3

(p → q)
Show: p → q

assumption
[Cond,6]

4
5
6

p
(p → q)

Show: q

assumption
R),2
[Nec,11]

7
8
9
10
11

(p → q)
p

p → q
p
q

R) (B),5
R) (B),4
RB),7
RB),8
→Ε),9,10

Analogously we can prove K) in DN-S5, the only difference is
that in line 4 and 5, we should first apply Ι), before it is possible to put
them by R) to the strict derivation. In S5 one must also prove 4):
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1Show: p → p [Cond,4]
2
3
4

p
p

Show: p

assumption
Ι),2

[Nec,6]
5
6

p
Show: p

R) (S5),3
[Red,12,13]

7
8
9

¬ p
¬p

Show: ¬ p

assumption
Def.,7
[Nec,11]

10
11

¬p
¬ p

R) (S5),8
Def.,10

12
13

¬ p
p

Def.,9
R),5

One could easily notice that in this way it is possible also to get
DN for KB and KDB, simply dropping Ε), or replacing it by D) ϕ 

ϕ. It is not possible to formalize KB4 in this way. KD4E allows for a
weaker definition of Γ* too because the above proof of 4) is also a
proof in this logic (line 3 is justified by Ι ), which is dual version of

Ε )), so it is sufficient to define Γ*(KD4E) as a sum of Γ* for K
(instead of K4) and for S5 in the latter version.

2.3. Modalization of rules
Segerberg and Bull [6] proposed another method for dealing with

modal logics in ND-systems. The starting point is the observation that
any rule valid in CPC should be still valid in any modal context. The
notion of a context is then explained in the following way: if Γ  ϕ is
valid in CPC, then the addition of n  to all elements of Γ and ϕ makes
the rule still valid. Essentially it is the application of the condition )
which is also fundamental for Fitch approach, where it is a theoretical
basis for [Nec] together with R). Here ) is a justification of a modaliza-
tion of any inference rule. For example, if in any F-system presence of
ϕ and ϕ→ψ in the proof allows to add ψ by →Ε), then by condition ),
we can add to proof nψ, if we have already nϕ and n(ϕ→ψ). In a
similar way we can modalize all other inference rules, e.g. for ∧:

n(∧Ι) nϕ , nψ  n(ϕ∧ψ)
n(∧Ε) n(ϕ∧ψ)  nϕ (ψ)
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Segerberg did more, because he also modalized all proof rules. Such
solution cannot be justified by condition ), because it is sufficient only
for inference rules. Nevertheless it is in accordance with the starting
motivation. Modalization of →Ι) and ¬Ε) is based on the following
principles:

if  Γ*n , ϕ  ψ ,  then  Γ  n(ϕ → ψ)
if  Γ*n , ¬ϕ  ⊥,   then   Γ  nϕ
(where Γ*n  means {ϕ: nϕ ∈ Γ }, both are derivable by CPC and ))

In Segerberg’s system there are no introduction and elimination
rules for . In case n=0, rules are simply CPC-rules, and the whole sys-
tem is adequate for K. Segerberg suggests that such basic system for key-
logic is enough; all extensions should be obtained by axiomatic additions.
Despite this we can consider whether in such a system some extensions
can be obtained in a different way. The other problem is what represen-
tation fits to such system. Modalized inference rules may be applied in
any format; of course, if it is a S-system, then their content-items are
not sequents, but sequent rules, for example for ∧ we have:

n(∧Ιs) if Γ  nϕ and  ∆  nψ ,  then   Γ , ∆  n(ϕ∧ψ)
n(∧Εs) if  Γ  n(ϕ∧ψ) ,  then   Γ  nϕ (ψ)

The problem arises with modalized proof rules. Segerberg suggested
F-T-system but it is not clear how, in practice, one should mark in such
a proof the transition from Γ*n to Γ . If we use Ja kowski format it is
evident that, in fact, we are applying R) in its modalized version, hence
the system is quite similar to Fitch’s approach, with the only difference
that there is no special rule [Nec] because strict derivations may be en-
tered by [Cond] and [Red] with the addition of  n>0 times to show-
formula.

It seems that Segerberg’s system may be simply modified to obtain
universal formalization, independent of the basic format, and allowing
extensions for logics other than K. The point is the redundancy of the
system. First of all we can always keep n=1 in the indices of  in the
definition of rules, moreover we may resign from the modalization of
many rules. One of the possible solution is to modalize proof rules only,
which is an obvious implication of the preceding paragraph. If we have
R) in the variant for K, such limitation is sufficient; we may even use
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solely modalized [Red]. In practice it is realised in such a way that to
any proof in a system DN-K, from preceding section we add as an as-
sumption ¬ϕ, under each show-line ϕ and change justification from
[Nec] to [Red ]. So modified Segerberg’s system is not very original; it
is in fact a variant of Fitch’s system.

A better solution, still in accordance with original motivation is to
limit modalization only to inference rules. It is based on natural inter-
pretation of condition ) and ND-system thus obtained is not a variant
of Fitch’s system any more because it forces to use different proof
strategies. To get an adequate formalization of K without any modifica-
tion of proof rules, one must allow also a modalization of inference rules
with empty set of premises, which is simply an application of GR). Al-
though formalization of this kind is universal, practically it is simpler to
use it with S-format because of the last proviso; in Ja kowski format it is
not immediately evident if a formula is really not dependent on any
assumptions.

A separate problem is the possibility of extensions of this for-
malization for other logics. A proposal of this kind may be found in
Hawthorn [14] but we omit wider presentation because of limited space
and because it seems to be not very useful from the practical point of
view. Many normal logics may be formalised with relatively smaller
effort. Instead we shall pay attention to modalization of theses and con-
sider some variants of GR):

GR ) You may put  before ϕ, if the set of assumptions for ϕ is empty
or ϕ is a -formula.
GR ) You may put  before ϕ, if the set of assumptions for ϕ is empty
or ϕ is a -formula.
GR ) You may put  before ϕ, if the set of assumptions for ϕ is
empty or ϕ is a M-formula.

It is evident that GR ) gives K4, GR ) KE, and GR ) K4E.
Addition of rules Ε ) or E) allows to obtain a formalization for D,
T, KD4, S4, KDE, KD4E, S5. Obviously we resign in this way from the
idea that there are no specific rules for modal functors but it seems that
adding axioms to K is not better.

Remark 8. The system where only inference rules are modalized is still
redundant. It is sufficient to keep as primary rule n(→Ε), and GR), all
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other modalized variants of inference rules of the sort {ψ1,...ψn}  ϕ
may be easily derivable as follows:

{1} 1 nψ1
  :  :   :
{n} n nψn
∅ n+1 ψ1 → (ψ2 → ...(ψn → ϕ)...) by applying

n-times →Ι) to the rule in question

∅ n+2 n(ψ1 → (ψ2 → ...(ψn → ϕ)...)) by GR)
  :  :   :

{1,...,n} n+2+n nϕ 1-n,n+2, n times n( →Ε)

Remark 9. KD4E may be simply formalized on the base of a system with
modalized inference rules; it is enough to add GR ) and Ε ).

3. The possibilistic approach
So far we have used  as a definitional shortcut, favouring ,

which was in accordance with the usual practice of many authors. How-
ever the problem of formalization of  is sufficiently interesting in
itself to be described separately. In the original system of Fitch  was in
fact treated as an independent functor and characterised on the level of
content by the pair of rules:

Ι) ϕ  ϕ ,  only for reflexive logics
Ε) if Γ*, ψ  ϕ , then Γ, ψ  ϕ .

In K&M two rules correspond to Ε); one for closing a derivation
and one for entering assumptions:

[Poss] Let ϕ be the show-formula of k-degree derivation and the first
usable-formula be a modal assumption, then we can close this deriva-
tion, provided ϕ has appeared as a usable-formula in this derivation.

d) if ψ is a usable-formula of k-degree derivation and ϕ is a show-
formula of k+1-degree derivation, then we may add ψ as a modal as-
sumption of the k+1-degree derivation.
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Also R) should be modified, we introduce the version which works
for the system in which both [Nec] and [Poss] are primitive. Because of
stylistic reasons it will be defined dually to our official R) from para-
graph 2.2. :

Let Γ be the set of usable-formulae of k-degree derivation and ϕ
∈Γ*, we may put ϕ into subderivation of k+1-degree by R) if at least
one of the conditions is satisfied:
a) the show-formula is ψ and the first usable-formula of this derivation
is not an indirect assumption.
b) the first usable-formula is a modal assumption.
If neither a) nor b) is satisfied, then we may put into this derivation any
ϕ ∈ Γ.

Schematically it looks like this:

i-j

k
l

:
Γ
:

ψ
Show: ϕ [Poss,o]

l+1
m-n

o

ψ
Γ*
:
ϕ

assumption
R)i-j

i+1, m-n

One should notice that although an introduction of modal assump-
tion is an optional element (we may have some -formula as show-
formula but to try to close this derivation by different rule), its presence
is a necessary condition to close the derivation by [Poss].

The system of Fitch contains also four rules of elimination and
introduction for negated modal formulae of the sort:

¬ Ε) ¬ ϕ  ¬ϕ
¬ Ι) ¬ϕ  ¬ ϕ
¬ Ε) ¬ ϕ  ¬ϕ
¬ Ι) ¬ϕ  ¬ ϕ

The presence of these rules, let us call them definitional rules,
raises the question: are they really necessary? If not, then how to for-
mulate ND-system with primitive rules for  and  which are really
independent and sufficient to derive all definitional rules? Such a solu-
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tion, if possible, will be in accordance with the normal practice of
treating logical constants in ND and other systems like sequent calculus.
Although ∧ and ∨ are interdefinable, usually they are characterised by
the pairs of independent rules (in particular ∧ is not present in the rules
for ∨, and vice versa); De Morgan’s rules are then introduced as deriv-
able. The wish to have such a characterization for modal connectives is
fully justified. The problem is of a general character (see e.g. [28] or
[18]). and perhaps, for the first time noted by Routley [24], where in-
completeness of modal rules in the sequent system of Ohnishi and Mat-
sumoto [22] was noted. We will take a closer look at this question in the
next paragraph.

For the most part of this section we will use K&M system for
CPC as basic, the addition of some modal rules will be explicitly
marked, e.g. CPC+[Nec] means that it is a system for CPC with [Nec].

3.1. Interdefinability problem
The system of Fitch is redundant indeed, but in a different, not

very satisfying way. We cannot get rid of all definitional rules, but we
can use only some of them because they are interderivable in the fol-
lowing way:

Lemma 3. a) ¬ E) is derivable in CPC+[Poss]+¬ Ε)
b) ¬ Ι) is derivable in CPC+[Poss]+¬ Ι)
c) ¬ Ε) is derivable in  CPC+[Nec]+¬ Ε)
d) ¬ Ι) is derivable in  CPC+[Nec]+¬ Ι)

Proof . We will put schemes of derivation for a) and d); b) and c) analo-
gously

1
2

¬ ϕ
Show: ¬ϕ [Red,5,8]

1
2

¬ϕ
Show:¬ ϕ [Red,4,8]

3
4
5

¬ ¬ϕ
¬¬ϕ

Show: ϕ

assum.
¬ Ε),3
[Poss,7]

3
4
5

ϕ
¬ϕ

Show: ¬¬ϕ

assum.
R),1
[Nec,7]

6
7

¬¬ϕ
ϕ

assum.
DN),6

6
7

ϕ
¬¬ϕ

R) (C),3
DN),6

8 ¬ ϕ R),1 8 ¬ ¬ϕ ¬ Ι),5

Simple consequence of this lemma is the observation that in order
to have a full system with  and  as primitive it is enough to use K&M
with [Nec] and [Poss] (and possibly with Ε) and Ι)) and any of the
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four pairs: ¬ E) and ¬ I), or ¬ E) and ¬ I), or ¬ I) and ¬ E), or
¬ E) and ¬ Ι).

On the other hand, the primitive rules for  and  are not inde-
pendent: E) and I) are interderivable in the system with ¬ E) (for a
proof of Ι)) and in the system with ¬ Ι) (for a proof of E)). What
is more also [Nec] and [Poss] are in fact mutually dependent, although
not, in general, interderivable. We can prove the following lemma:

Lemma 4. a) [Poss] is admissible in CPC+[Nec]+¬ Ε)+¬ Ι);
b) [Nec]REG is admissible in CPC+[Poss]+¬ E)+¬ I).

(where [Nec]REG means [Nec] with proviso for regular logics)

The proof is involved in the following schemes of elimination:

i-j
k

l

:
Γ

ψ
:
Show: ϕ [Poss,o]

i-j
k

l

:
Γ

ψ
:
Show: ϕ [Red,l+3,r+2]

l+1
m-n

o

ψ
Γ*
:
ϕ

assum.
R),i-j

i+1, m-n

⇒ l+1
l+2
l+3
l+4

¬ ϕ
¬ϕ
ψ

Show: ¬ψ

assumption
¬ Ε),l+1
R),k
[Nec, n+2]

m-n
n+1
n+2

Γ*
¬ϕ
Show:¬ψ

R),i-j
R) (C),l+2
[Red,r,r+1]

n+3
o-p

r

r+1

ψ
Γ*
:
ϕ

¬ϕ

assumption
R),m-n

by assumed
proof;
n+3,o-p
R),n+1

r+2 ¬ ψ ¬ I), l+4
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i-j
k

l

:
Γ

ψ
:
Show: ϕ [Nec,o]

i-j
k

l

Γ
ψ

:
Show: ϕ [Red,s+2,s+3]

m-n

o

Γ*
:
:
ϕ

R),i-j

m-n

⇒ l+1
l+2
m-n
o

¬ ϕ
¬ϕ

Γ
Show: ¬ψ

assumption.
¬ E),l+1
R),i-j
[Poss,s+1]

o+1
p-r

s

s+1

¬ϕ
Γ*
:
ϕ

¬ψ

assumption
R),m-n

by assumed
proof; p-r
¬Ε),o+1,s

s+2
s+3

¬ ψ
ψ

¬ I),o
R),k

It is evident that [Nec] and [Poss] are equivalent in regular logics;
[Poss] is too weak to capture in ND the effect of GR) but we can use a
variant of [Poss] which is sufficiently strong. Wisdome [29] proposed a
rule [⊥]W and Fitting [11] [⊥]F :

[⊥]W if    Γ* , ψ  ⊥ ,  then Γ , ψ  ϕ
[⊥]F if    Γ* , ψ  ⊥ ,  then Γ  , ψ  ⊥

Both variants are equivalent; [⊥]W follows from [⊥]F in CPC,

and the latter is a particular form of [⊥]W, hence further we will simply
use [⊥] for any of them. The equivalence of [Nec] and [⊥] is stated in
the next lemma:

Lemma 5. a) [⊥] is admissible in CPC+[Nec]+¬ I);
b) [Nec] is admissible in CPC+[⊥]+¬ E).

Proof by similar schemas as in the previous lemma.

Remark 10. There is no need to modify [Poss] in regular logics because
sequent rule E) is satisfied in each regular logic, even with empty Γ.
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On the other hand in case of normal logic D there is no need to add
modal assumption in the strict derivation initiated by [Poss], because in
D we have admissible rule:

if   Γ*  ψ ,   then   Γ  ψ .

Hence, it is possible in all extensions of D to simplify [Poss],
making an introduction of modal assumption really an optional element,
similarly as in [Cond] and [Red]. Moreover it lets to obtain adequate
formalization for D, without any special rule of inference such as D) ϕ

 ϕ, which is now simply derivable. If we allow such a simplification in
the definition of [Poss] on the ground of regular logics we must add
similar proviso as in the case of the definition of [Nec] in them, namely
that in outer derivation at least one usable-formula should be a

-formula.

In effect, instead of the expected system with independent rules
we have a different opportunity: a system with  as basic functor based
on [⊥] (or [Poss], if we restrict our interests to regular logics). We will
go back to this question in the next paragraph. Anyway the choice of
ND based on [Nec] or on [⊥] still forces us to add some of the defini-
tional rules as primitive. Possible choices are taken together in the next
lemma:

Lemma 6. Adequate formalization of C  (K) on the basis of CPC may
be obtained by the addition of  a)  [Nec]+¬ I)+¬ E)  or
b)  [⊥]+¬ E)+¬ E).

Proof . a) by lemma 3, c), d)
for b) the proof of ¬ I); for ¬ I) the proof is analogous.

1
2

¬ϕ
Show:¬ ϕ

assumption
[Red,5]

3
4
5

ϕ
¬ϕ

Show:⊥

assumption
R),1
[⊥,6,7]

6
7

¬ϕ
ϕ

assumption
R) (C),3

The drawback of the latter system is that [⊥] is not a good repre-
sentative of modal rule, which is especially evident in K&M, where it
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looks like a kind of indirect proof, and only the rule of introduction of
modal assumption has some flavour of modal rule but it is independent
of [⊥], at least on the level of representation.

Now we are ready to answer the question, if it is possible to get a
system, where all definitional rules are derivable. [11] contains formali-
zations of this sort, but this solution is based on the modification of R)
in a way that the interdefinability of  and  is already contained in the
definition of the Γ*, e.g. for C  (and other nontransitive logics) it looks
{ϕ: ϕ∈Γ}∪{¬ϕ:¬ ϕ∈Γ} and analogously for other logics. It is obvi-
ous that all definitional rules are derivable with the help of such a defini-
tion of Γ*, both with the use of [Nec], and [Poss]. The disadvantage is
in a growing complexity of definition for Γ*, what is more, we must also
generalise [Nec], so that it is possible to close a derivation starting with
“Show:¬ ϕ” provided we deduce usable-formula ¬ϕ; in [⊥] we can add
as a modal assumption ¬ϕ if we have already ¬ ϕ in the proof. These
rather radical changes are partly obscured in [11] by the use of general-
ized terminology. It seems that the problem is solved in a satisfying way
only in the deductive systems of a very generalised sort, where radical
enrichment of the basic structural tools makes possible greater flexiblity
e.g. in Display Logic (see [4], [28]) or in multisequential sequent cal-
culus (see [18]). But one should notice that, at least with respect to
some logics, like S4, or S5, we can get satisfying result by very modest
changes, without loosing standard ND-format and changing [⊥] by the
variant of [Poss] much better suited as a representative of basic rule for

. System of this sort for S5 is present in [15] but it is also possible to
make some changes in order to have a system for S4. In a system for
S5, we admit that R) in strict derivations is limited to  M-formulae,
[Nec] is in standard form and [Poss] is based on the following rule from
the content:

if Γ*, ψ  ϕ , then  Γ , ψ  ϕ, where ϕ is any  M-formula.

Variant for S4 is similar but R) in case of [Nec] and [Poss] is re-
stricted to -formulae and ϕ in the schema of [Poss] must be any

-formula. Proofs of definitional rules are the following:
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1  ¬ϕ
2  Show:¬ ϕ [Red,4,5]

1  ¬ ϕ
2  Show: ¬ϕ [Red,4,5]

3
4
5

ϕ
¬ϕ

Show:¬ ¬ϕ

assum.
R),1
[Poss,10]

3
4
5

¬ ¬ϕ
¬ ϕ
Show: ϕ

assum.
R),1
[Nec,7]

6
7

ϕ
¬ϕ

assum.
R) (S4),4

6
7

¬ ¬ϕ
Show:ϕ

R) (S4),3
[Red,9,10]

8
9
10

¬ϕ
⊥
¬ ¬ϕ

E),7
¬E),6,8
¬E),9

8
9
10

¬ϕ
¬ϕ

¬ ¬ϕ

assum.
I),8

R),6

Proof of ¬ I) is analogous to the proof of ¬ Ι) and a proof of ¬ E)
is in fact contained in the above proof of ¬ E) (lines 3 and 5-10).

So in both cases of sufficiently strong logics we can get systems
with four basic rules for  and , (although not independent) and with-
out definitional rules; [Poss] is interpreted as a rule of elimination for 
(because of the way of introducing modal assumptions).

3.2. Modal assumptions
In the previous paragraph we have noticed that adequate formali-

zation of modal logics can be based on  as a primitive functor. This
possibility is fully realized by Fitting [11], who presented two
ND-systems for modal logics, one called A-system, is based on [Nec] and
the second, I-system, is based on [⊥]. This distinction is quite important
to Fitting, who remarked that in proof construction A-system is more
connected with axiomatic formalizations with GR), I-system is rather
close to tableau systems. Semantic reasons are even more important;
strict derivations closed by [Nec] are interpreted in a different way than
those closed by [⊥]. In the former case the separated derivation is a
counterpart of an arbitrary chosen world (hence the name A-system per
analogiam to traditional general-categorical A-statements). In the latter
it is a counterpart of some specific world in a Kripke model (hence the
name I-system as particular-categorical I-statement). This informal
interpretation is for Fitting a base for the construction of the respective
soundness proofs for both systems.

So far we have run a different course, of mixing both systems but
full characterisation apart, we can ask a question: what advantages our
possibilistic approach, “possibly” offers? Previous presentation presup-
posed Ja kowski format with the apparatus of strict derivation and re-
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stricted reiteration. But the presence of modal assumptions can make at
least one of these components unnecessary, because all the necessary
information which was transported into strict derivation by R) may be
incorporated into the modal assumption, which is possible due to the
properties of logics. Let us display in the next lemma some new rules of

I) derivable in some regular logics (and their extensions):

Lemma 7. The following rules are derivable in the respective logics:
a) ϕ , ψ    (ϕ∧ψ), for any logic
b) ϕ , ψ    (ϕ∧ ψ), for any transitive logic
c) ϕ , ψ    (ϕ∧ ψ), for any symmetric logic
d) ϕ , ψ   (ϕ∧ ψ), for symmetric and reflexive logic

Proof is an easy exercise.

The similarity of these rules to the respective definitions of Γ* is
straightforward. It seems that whenever we have a definition of Γ*, we
can define suitable Ι) for exactly the same logics, but now formulated
with [⊥] instead of [Nec]. It is evident that we can get rid of restricted
R) in a system where we use above rules as primitive. The only way of
entering strict derivation is [⊥] and R) is simply forbidden here. All for-
mulae that we need to close such a proof, and that were so far trans-
ported by R), are now linked into conjunction with , which is next
turned into modal assumption. But we can go even further because such a
solution is not longer dependent on Fitch’s approach. We do not have
special reasons to separate parts of the proof as subderivations, strict or
nonstrict or whatever, hence we can combine this approach with any
format. Let us illustrate how to get such a system for C in Suppes repre-
sentation. As a counterpart of [Poss] we will introduce the following rule
for E):

π i ϕ
.
.

{k} k ϕ modal assumption
.
.

{k} n ψ
π n+1 ψ  i, k, n, E), where  π  is the set of numbers of 

assumptions for ϕ
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It is justified by the following rule admissible in all considered logics:

if   Γ  ϕ  and   ϕ  ψ  ,  then   Γ  ψ.

We also need a sequent version of the first of Ι) rules, displayed
above in lemma 7 and some sequent versions of definitional rules. In
order to get the extensions of C it is enough to add more suitable se-
quent versions of the above rules to the system and to strengthen our
version of Ε) , replacing ψ by ⊥, especially if we want to formalize
normal logics (see lemma 6, b)). Careful reader should not have any
problems with detailed exposition, so we keep it as granted. The overall
moral is that  seems to fit better to ND-systems as a primitive functor
because it is format insensitive.

University of ód , indrzej@krysia.uni.lodz.pl
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