NATURAL DEDUCTION FOR PARACONSISTENT LOGIC*

Milton Augustinis DE CASTRO Itala Maria LOFFREDO D'OTTAVIANO**

Abstract

In this paper, by using the method of natural deduction, via the method of subordinate proofs, we develop a hierarchy of natural deduction logical systems NDC_n containing just deduction rules (or deduction schemata) with no axiom schema. We prove that these systems NDC_n , $1\ n$, are logically equivalent to the systems of Da Costa's hierarchy of paraconsistent logics C_n , $1\ n$. Some of the deduction rules used to introduce these systems are new and do not correspond to Da Costa's axioms rewritten, permitting the definition of a new paraconsistent semantics, such that soundness and completeness of the systems NDC_n , $1\ n<$, may be directly obtained. Other natural deduction systems logically equivalent to Da Costa's systems C_n , $1\ n$, are also introduced.

1. Introduction

A deductive theory T is said to be inconsistent if it has as theorems a formula and its negation; otherwise, T is said to be consistent. A deductive theory T is said to be trivial if every formula of its language is a theorem; otherwise, T is said to be non-trivial.

If a theory T has as its underlying logic the classical logic, the deduction of a contradiction leads to its trivialization. Therefore, in theories based on classical logic, to deduce a contradiction is equivalent to trivialize them.

^{*} This research was partially supported by Fundação Coordenação de Aperfeiçoamen-to de Pessoal de Nível Superior (CAPES), Brazil.

^{**} The authors would like to thank an anonymous referee for useful comments and suggestions concerning the first version of this paper.

4 MILTON A. DE CASTRO, ITALA M. LOFFREDO D'OTTAVIANO

A logic is paraconsistent if it can be used as the underlying logic to inconsistent but non-trivial theories, which we call paraconsistent theories.

D'Ottaviano [8] points that in paraconsistent logic the role of the Principle of Non-contradiction is, in a certain sense, restricted. Although in those logics the Principle of Non-contradiction is not necessarily invalid, from a formula and its negation it is not possible, in general, to deduce any other formula.

Da Costa [5] introduced his hierarchy of first-order logics for the study of inconsistent yet non-trivial theories: the hierarchy of propositional calculi \mathbf{C}_n , 1 n , the hierarchy of predicate calculi \mathbf{C}_n , 1 n , the hierarchy of predicate calculi with equality $\mathbf{C}_n^{=}$, 1 n , and the hierarchy of calculi of descriptions \mathbf{D}_n , 1 n .

Da Costa, his disciples and collaborators have used the Hilbert-Fregean style axiomatic method in the study of Da Costa's hierarchy C_n , 1 n . The first work in which this Hilbert-Fregean style was not used in the construction of paraconsistent systems is due to Raggio [17].

Raggio [17] introduces a hierarchy of *sequent* calculi \mathbf{CG}_n , 1 n , trying to solve the problem of the decidability of the systems \mathbf{C}_n , 1 n . Raggio proves the equivalence between the *sequent* calculi \mathbf{CG}_n , 1 n , and the calculi \mathbf{C}_n , 1 n , but \mathbf{CG}_n could not be proved decidable. Continuing, he constructs a new hierarchy of *sequent* calculi \mathbf{WG}_n , 1 n , that are decidable, but in spite of having similar properties to the ones of the systems \mathbf{C}_n , 1 n , these two hierarchies of systems are not equivalent.

In Alves [1], systems of natural deduction were introduced for the hierarchy \mathbf{C}_n , 1 n , using only deduction rules, but unfortunately Alves did not study those systems.

As both axiomatizations for the two equivalent systems \mathbf{C}^* and $\mathbf{C}\mathbf{G}^*$, introduced by Da Costa and Raggio respectively, were not suitable for a proof-theoretic analysis, Raggio [18] presents the system $\mathbf{N}\mathbf{C}^*$, logically equivalent to Da Costa's system \mathbf{C}^* , using Gentzen's natural deduction. This axiomatic system of quantificational paraconsistent logic without equality has the peculiarity of having the Law of Excluded Middle as its sole axiom. Pereira and Moura [16], an unpublished work, presents a natural deduction system with no axiom, the system $\mathbf{N}\mathbf{N}\mathbf{C}$, that improves the propositional part of $\mathbf{N}\mathbf{C}^*$ introduced in Raggio [18].

Castro [3] applies the method of natural deduction introduced by Jaskowski [11] and Gentzen [10], through the method of subordinate proofs

of Fitch [9], to the hierarchy of Da Costa's propositional paraconsistent logics \mathbf{C}_n , 1 n .

In this paper, based in Castro [3], we introduce the hierarchy of natural deduction systems NDC_n , 1 n , and show that NDC_1 is logically equivalent to C_1 ; and we sketch the necessary procedures to demonstrate this equivalence between NDC_n and C_n , 2 n . In spite of the main syntactical and semantical results, like for instance consistency, soundness and completeness being natural consequences of the logical equivalence between the hierarchies C_n and NDC_n , 1 n , we may prove the soundness and completeness of our systems directly from the definition of a new paraconsistent semantics, which we introduce in this paper.

In the next section we present Da Costa's propositional paraconsistent systems C_n , 1 n , and some important results about them.

In the third section, we recall the method of natural deduction by subordinate proofs, and introduce a new natural deduction formulation for the paraconsistent logic C_1 , the system NDC_1 .

In the fourth section, we prove the logical equivalence between C_1 and NDC_1 .

In the fifth and sixth sections, we present a new natural deduction formulation for the paraconsistent logic C_n , 1 n , the systems NDC_n , 1 n .

In the last section, we discuss some results of the previous sections and introduce a new paraconsistent semantics relatively to Alves [1]. We also formulate two new hierarchies of paraconsistent systems such that in every one of these hierarchies there is a system logically equivalent to the corresponding system \mathbf{C}_n , $\mathbf{1}$ n

We observe that some of the rules that we use to introduce the systems \textbf{NDC}_n , 1 n , are new, not simply corresponding to Da Costa's axioms rewritten, as it was done by Alves [1].

2. Da Costa's propositional paraconsistent logics C_n

The language L of Da Costa's paraconsistent systems C_n , 1 n , has as primitive symbols propositional variables, the connectives \neg , , &, , and parentheses.

The notions of formula and theorem, as well as the general conventions and notations, are the standard ones, as in Kleene [12].

Da Costa's paraconsistent logics were formulated satisfying the conditions:

"I - In \mathbf{C}_1 it should not be valid, in general, the principle of non contradiction "

"II - From two contradictory propositions it should not usually be possible to deduce any proposition".

The system C_1 is the first of the hierarchy of systems of propositional paraconsistent logics presented by Da Costa [5]. The following definitions are added to the language L:

```
\begin{array}{lll} A^0 =_{df} \neg (A \& \neg A) \\ A^n =_{df} A^{0...0} & (\text{`0' n times})^1 \\ A^{(1)} =_{df} A^0 \\ A^{(n)} =_{df} A^1 \& A^2 \& ... \& A^n, \\ \text{with n} & 1, \text{ where } A^1 \text{ is } A^0, A^2 \text{ is } A^{00}, A^3 \text{ is } A^{000}, ..., A^n \text{ is } A^{0...0} \\ (A & B) =_{df} (A & B) \& (B & A) \\ & A =_{df} \neg A \& A^0. \end{array}
```

According to these definitions, A^0 is read as "A is a well-behaved formula" or "A is regular"; A^n is read as "A is a n-times reiterated regular formula"; $A^{(n)}$ is read as "A is a composed regular formula of degree n"; the symbol corresponds to the usual equivalence; and the connective is called "strong negation".

We observe that the strong negation has all the properties of the classical negation, since we can prove that $(A \ B) \ ((A \ B) \ A)$, for every A and B formulas of C_1 .

The schemata of axioms and the deduction rules of \mathbf{C}_1 are the following:

```
AXIOM 1: A (B A)
AXIOM 2: (A B) (((A (B C)) (A C))
AXIOM 3: A&B A
AXIOM 4: A&B B
AXIOM 5: A (B A&B)
```

¹ For instance: A^{00} is $\neg (A^0 \& \neg (A^0))$; A^{000} is $\neg (A^{00} \& \neg (A^{00}))$; and so on.

```
AXIOM 6: A A B
AXIOM 7: B A B
AXIOM 8: (A C) ((B C) (A B C))
AXIOM 9: ¬¬ A A
AXIOM 10: A ¬ A
AXIOM 11: B<sup>0</sup> ((A B) ((A ¬ B) ¬ A))
AXIOM 12: A<sup>0</sup>&B<sup>0</sup> (A&B)<sup>0</sup>
AXIOM 13: A<sup>0</sup>&B<sup>0</sup> (A B)<sup>0</sup>
AXIOM 14: A<sup>0</sup>&B<sup>0</sup> (A B)<sup>0</sup>
RULES: Rule of Modus Ponens (MP)
Substitution Rule (SR).
```

Axiom 11 corresponds to Da Costa's insight of paraconsistent logic. This axiom is just a particular case of the usual *reductio ad absurdum*. It asserts that we can apply the *reductio ad absurdum* in Da Costa's paraconsistent logic only when the antecedent B is a "well-behaved" formula.

The last three axioms may be interpreted as the conditions for propagation of "well-behavior".

In order to obtain the systems C_n , 1 n< , we replace Axioms 11 to 14:

```
AXIOM 11<sup>n</sup>: B^{(n)} ((A B) ((A ¬ B) ¬ A))

AXIOM 12<sup>n</sup>: A^{(n)}\&B^{(n)} (A&B) (n)

AXIOM 13<sup>n</sup>: A^{(n)}\&B^{(n)} (A B) (n)

AXIOM 14<sup>n</sup>: A^{(n)}\&B^{(n)} (A B) (n)
```

In every C_n , 1 n< , the strong negation is defined by:

$$_{n}A =_{df} \neg A&A^{(n)}$$
,

where n corresponds to each C_n .

We observe that in every \mathbf{C}_n the strong negation has all the properties of classical negation, since we can prove (A B) ((A $_n$ B) $_n$ A)) in \mathbf{C}_n , 1 n .

Finally, the system **C** is defined by:

AXIOM 1 to AXIOM 10 of C_1 .

We observe that classical propositional logic is considered as the system \mathbf{C}_0 of this hierarchy. This logic is, in fact, given by \mathbf{C} plus reductio ad absurdum, that is:

AXIOM 11°:
$$(A B) ((A \neg B) \neg A)$$
).

Now, only in order to better characterize these systems, we state some of their results. Some of the proofs of these results are in the papers mentioned in D'Ottaviano [8].

Theorem 2.1. The following schemata are not provable in
$$\mathbf{C}_n$$
, $1\ n$: $\neg (A\& \neg A); \qquad (A\& \neg A)\ B; \qquad A \neg \neg A; \qquad \neg A \ _nA;$ $A (\neg A B); \qquad ((A B)\& \neg A)\ B; \qquad (A \neg A)^n; \qquad (A A)^n;$ $((A B)\& \neg B)\ \neg A; \quad \neg (A B)\ \neg A\& \neg B; \qquad \neg (A\&B)\ \neg A\ \neg B;$ $\neg (A\&B)\ \neg A\ \neg B;$ $\neg (A\&A)\ \neg (A\&A)\ \neg (A\&A)\ \neg (A\&A)\ \neg (A\&A)\ \neg (A\&A)\ \neg (A\&B)\ \neg$

Theorem 2.2. In C_n , 1 n< we have:

Theorem 2.3. All the rules and valid schemata of the classical positive propositional calculus are valid in C_n , 1 n<.

Theorem 2.4. The following schemata are not provable in
$$C$$
: ((A B) A) A; (A B) (B A); \neg (A&B) \neg A \neg B.

Theorem 2.5. No schema of type $\neg A$ is a theorem in C.

Theorem 2.6. If A is a theorem of the intuitionistic positive propositional calculus, then A is a theorem of C.

Theorem 2.7. (Deduction Theorem) If is a set of formulas, we have that , $A \vdash_{C_n} B$ if, and only if, $\vdash_{C_n} A$ B, 1 n .

The following theorem concerns regular formulas.

Theorem 2.8. If is a set of formulas and $A_1, A_2, ..., A_m$ are the atomic components of the formulas of $\{A\}$, then a necessary and sufficient condition for $\vdash_{C_0} A$ is that $A_1^{(n)}, A_2^{(n)}, ..., A_m^{(n)} \vdash_{C_n} A$, for $1 \ n < ...$

Theorem 2.9. (Arruda) Every system in the hierarchy C_0 , C_1 ,..., C_n ,..., C is strictly stronger than those which follow it.

Definition 2.10. Let be the set of all formulas of **L**. A set of formulas is said to be *trivial* if the set of consequences of is; is said to be *inconsistent* (relatively to the basic negation \neg) if there is at least one formula A such A and \neg A are both consequences of.

Theorem 2.11. Every C_n , 1 n , is consistent and non-trivial.

Theorem 2.12. (Arruda) The systems C_n , 1 n , are not decidable by finite matrices.

We observe that the *Replacement Theorem*², although valid in C_0 , is not valid in general in C_n , 1 n .

A very recent study on the systems C_n , 1 n , from a new semantical approach, appears in Marcos [15].

3. The method of natural deduction applied to the paraconsistent logic \mathbf{C}_1

In this section, we introduce the system of natural deduction NDC_1 , using the method of natural deduction a la Fitch [9]. The language of NDC_1 is the language of C_1 .

We adopt thirteen deduction rules, which allow us to deduce exactly the theorems of the axiomatic system \mathbf{C}_1 . The system \mathbf{NDC}_1 is the first of a hierarchy of systems of natural deduction for Da Costa's paraconsistent propositional logics \mathbf{C}_n , 1 n .

The system NDC_1 is introduced through the following rules:

² This special theorem of substitution states: if A and B are equivalent, they may be substituted for each other at any point in an expression C.

Rule of transport

Introduction rules

Disjunction Introduction (I-)

: : k A (or B) : : s A B (or A B) k, I -

Conjunction Introduction (I-&)

: :
k A (or B)
: :
s B (or A)
: :
u A&B k, s, I - &

Restricted Rule of Negation Introduction [or restricted *Reductio ad Absurdum*] (I - ¬ (rest))

Distributive Rule of Negation into Conjunction (DNC)

```
\begin{array}{lll} : & : \\ p & \neg (A \& B) \\ : & : \\ s & \neg A \neg B & p, DNC \end{array}
```

Distributive Rule of Negation into Disjunction (DND(rest))

$$\begin{array}{lll} : & : & \\ p & A^0 & (or \ B^0) \\ : & : & \\ q & B^0 & (or \ A^0) \\ : & : & \\ r & \neg (A \ B) \\ : & : & \\ s & \neg A \& \neg B & p, q, r, DND(rest) \end{array}$$

Distributive Rule of Negation into Implication (DNI(rest))

```
\begin{array}{llll} : & : & & \\ p & A^0 & (or \ B^0) & & \\ : & : & & \\ q & B^0 & (or \ A^0) & & \\ : & : & & \\ r & \neg (A \ B) & & \\ : & : & & \\ s & A \& \neg B & p, q, r, DNI(rest) \end{array}
```

Elimination rules

```
Implication Elimination (E - )
      A B (or A)
p
      A
            (or A B)
q
      В
                  p, q, E -
Disjunction Elimination (E - )
      A B
p
                  supposition
            A
q
            :
C
r
            В
                  supposition
            \mathbf{C}
t
      C
t+1
                  p, q-r, s-t, E -
Conjunction Elimination (E - &)
      A&B
p
            (or B) p, E - &
      A
q
```

A formal proof in \mathbf{NDC}_1 is a finite sequence of items (formulas) where each one of them is either a premise (or hypothesis), an axiom of the system, or is logically derived from previous ones in the sequence by application of only one deduction rule. A formal proof that possesses one or more premises is said to be a hypothetical proof, and a formal proof that has no premises is called a categorical proof. A subordinate proof (of a given proof) is a proof that begins with an additional premise (or supposition). All subordinate proofs are subordinated to a principal proof and all of them must be eliminated in order to return to the main ones.

If a proof and all its subordinate proofs (if any) use only deduction rules, it will be said to be an *introduction-elimination proof* (or an *intelim proof*).

If there is a proof of B_n in NDC_1 from the premises $A_1, A_2, ... A_n$, this is denoted by $A_1, A_2, ... A_n \vdash_{NDC_1} B_n$.

If B_n is the final item of a formal proof, then this formula is said to be *provable* or to be a *conclusion*.

If there is a proof of B_n in NDC_1 from the empty set of premises, this formula is said to be a *theorem*, what is denoted by $\vdash_{NDC_1} B_n$.

Graphically, we represent a proof in \mathbf{NDC}_1 by a vertical sequence of items (formulas or subproofs), and we develop a subproof in a parallel vertical sequence of items to the immediate right of the principal sequence of items.

Let NDC_0 be the classical system of natural deduction as in Gentzen [10]. The difference between NDC_1 and NDC_0 is not only in the amount of adopted rules, but also in the restrictions imposed to certain rules of deduction. In NDC_1 , for instance, the application of the rule of *reductio ad absurdum* is conditioned to the previous presence of a certain regular formula in the demonstration, while in NDC_0 this is not necessary.

4. The logical equivalence between the system C₁ and the system NDC₁

In order to prove the syntactical equivalence between Da Costa's paraconsistent system \mathbf{C}_1 and our natural deduction system \mathbf{NDC}_1 , we shall first prove that every theorem of \mathbf{C}_1 is provable in \mathbf{NDC}_1 ; second, we shall prove that every deduction rule of the system \mathbf{NDC}_1 is deducible in the axiomatic system \mathbf{C}_1 .

Theorem 4.1. Every theorem of the system C_1 is a theorem of the system of natural deduction NDC_1 .

Proof

We have to prove that every axiom schema of C_1 is a theorem in NDC_1 . In order to illustrate this we shall only present the complete proofs of Axioms 11 and 12. The proofs of Axiom 1-10 are simple and we shall not make them. The proofs of Axioms 13 and 14 are similar to the proof of Axiom 12.

```
1 Axiom 11: B^0 ((A B) ((A ¬ B) ¬ A))
1
                                           supposition
2
                                           supposition
     A B
3
        A \neg B
                                           supposition
4
         | A
                                           supposition
5
          A B
                                           2, Reit
6
                                           4, 5, E -
7
                                           3, Reit
          A \neg B
8
         \neg B
                                           4, 7, E -
9
        \neg A
                                           1, 4-8, I - \neg (rest)
                                           3-9, I -
10 \mid (A \neg B) \neg A
11 \mid (A \mid B) \mid ((A \mid B) \mid A)
                                           2-10, I -
12 B^0 ((A B) ((A \neg B) \neg A))
                                           1-11, I -
```

```
2 Axiom 12: A^0 \& B^0 (A \& B)^0
       A^0 & B^0 \\ A^0
                                                  supposition
 2
                                                  1, E - &
       {\bf B}^0
 3
                                                  1, E - &
        \neg [(A\&B)^0]
 4
                                                  supposition
 5
         \neg [\neg [(A\&B)\&\neg (A\&B)]]
                                                  4, def. of regular formula
 6
         [(A\&B)\&\neg(A\&B)]
                                                  5, E - ¬¬
                                                  6, E - &
 7
         A&B
 8
                                                  7, E - &
         Α
 9
         В
                                                  7, E - &
                                                  6, E - &
  10
         \neg (A\&B)
  11
         \neg A \neg B
                                                  10, DNC
  12
           \neg A
                                                  supposition
          |\neg A|
  13
                                                  12. R
  14
          |\neg B|
                                                  supposition
  15
                                                  supposition
            Α
  16
            В
                                                  9, Reit
  17
            \neg B
                                                  14, Reit
  18
          \neg A
                                                  3, 15-17, I -¬(rest)
  19
        | \neg A
                                                  11, 12-13, 14-18, E -
       \neg \neg [(A\&B)^0]
 20
                                                  2, 4-19, I - \neg (rest)
 21 \mid (A\&B)^0
                                                  20, E - ¬¬
 22 \text{ A}^0 \& \text{B}^0 \text{ (A&B)}^0
                                                  1-21, I -
```

The rule of *Modus Ponens* of C_1 corresponds to the Implication Elimination Rule of NDC_1 .

For every application of the Substitution Rule in a theorem of C_1 , there is a corresponding proof in NDC_1 .

We observe that as usually in axiomatic systems and in natural deduction systems, C_1 and NDC_1 have the following Assertion Property (AP):

If $\vdash_S A$ then $\vdash_S A$, for every set of formulas of the language of S, S being either C_1 or NDC_1 .

Furthermore:

If
$$\vdash_{\mathbf{C}_1} \mathbf{A}$$
, then $\vdash_{\mathbf{NDC}_1} \mathbf{A}$.

Theorem 4.2. Every deduction rule of the system NDC_1 is provable in the axiomatic system C_1 .

Proof

We shall indicate the proofs of the rules DNC, DND(rest) and DNI(rest), because they need a special sequence of steps. The proofs of the other rules are found in the literature.

- 1) The proof that $A \vdash_{C_1} A$ is immediate.
- 2) Distributive Rule of Negation into Conjunction (DNC)
 The proof of DNC is an immediate consequence of Theorem 2.2
 (⊢_{C_n}¬(A&B) (¬A¬B)) and Theorem 2.7.
- 3) Distributive Rule of Negation into Disjunction (DND(rest))

Proof

We have to prove that:

$$A^0 \& B^0$$
, $\neg (A B) \vdash_{C_1} \neg A \& \neg B$.

- By (1), AP, Axiom 1, SR, MP, Axiom 7, Axiom 11, Axiom 6, Axiom 5 and Deduction Theorem:
 - (a) $\vdash_{C_1} (A B)^0 (\neg (A B) (B (\neg A \& \neg B))).$
- By (1), AP, Axiom 1, SR, MP, Axiom 6, Axiom 11, Axiom 5 and Deduction Theorem:
 - $(b) \quad \vdash_{C_1} (A \ B)^0 \ (\lnot(A \ B) \ (\lnot B \ (\lnot A \& \lnot B))).$
- By (1), AP, (A B) 0 $\vdash_{C_1} \neg (A B)$ (B \neg A& $\neg B$), (A B) 0 $\vdash_{C_1} \neg (A B)$ ($\neg B \neg A \& \neg B$), MP, Axiom 10, SR, Axiom 8 and Deduction Theorem:
 - $(c) \quad \vdash_{C_1} (A \ B)^0 \ (\lnot (A \ B) \ (\lnot A \& \lnot B)).$
- By Axiom 13, SR, $(A \ B)^0 \vdash_{C_1} \neg (A \ B) (\neg A \& \neg B)$, Deduction Theorem, transitivity of implication and MP:
 - (d) $\vdash_{\mathbf{C}_1} \mathbf{A}^0 \& \mathbf{B}^0 \ (\neg (\mathbf{A} \ \mathbf{B}) \ (\neg \mathbf{A} \& \neg \mathbf{B})).$
 - By (1), AP, (c), Axiom 13, SR, transitivity of implication and MP:
 - (e) $A^0 \& B^0$, $\neg (A B) \vdash_{C_1} \neg A \& \neg B$.
- 4) Distributive Rule of Negation into Implication (DNI(rest))

Proof

We have to prove that:

$$A^{0}\& B^{0}, \neg (A B) \vdash_{C_{1}} (A\& \neg B).$$

The demonstration is obtained through the following sequence of steps.

By (1), AP, A&B \vdash_{C_1} A, SR, Axiom 5, MP, distributivity of & into , \vdash_{C_1} A 0 &A& \neg A B, Axiom 4, Axiom 8 and Deduction Theorem:

(a) $A^0 \& B^0 \vdash_{C_1} \neg A \ B \ (A \ B).$

By (1), AP, Axiom 11, SR, Axiom 1, MP, Axiom 14 and Deduction Theorem:

(b) $A^0 \& B^0 \vdash_{C_1} (\neg A \ B \ (A \ B)) \ (\neg (A \ B) \ \neg \ (\neg A \ B)).$

By (a), (b) and MP:

(c) $A^0 \& B^0 \vdash_{C_1} \neg (A \ B) \neg (\neg A \ B)$.

By (1), Axiom 3, SR, AP, MP, Axiom 4, Axiom 9, Axiom 5 and Deduction Theorem:

(d) $A^0 \vdash_{C_1} (\neg A \& \neg \neg A) (A \& \neg A)$.

By (1), Axiom 11, SR, AP, MP, (d), Axiom 1, definition of regular formula and Deduction Theorem:

(e) $\vdash_{\mathbf{C}_1} \mathbf{A}^0 (\neg \mathbf{A})^0$.

By (1), Axiom 3, SR, AP, MP, (e), Axiom 4 and Axiom 5:

(f) $A^0 \& B^0 \vdash_{C_1} (\neg A)^0 \& B^0$.

By (f), 3(d), SR, AP and MP:

(g) $A^0 \& B^0$, $\neg (\neg A \ B) \vdash_{C_1} (\neg \neg A \& \neg B)$.

By (g), Axiom 3, SR, Axiom 9, transitivity of implication, MP, AP, Axiom 4, Axiom 5 and Deduction Theorem:

(h) $A^0 \& B^0 \vdash_{C_1} \neg (\neg A \ B) \ (A \& \neg B).$

By (c), (h), transitivity of implication, SR, AP and MP:

(i) $A^0 \& B^0 \vdash_{C_1} \neg (A \ B) \ (A \& \neg B).$

By (1), AP, (i) and MP:

(j) $A^0 \& B^0$, $\neg (A \ B) \vdash_{C_1} (A \& \neg B)$.

So, we have proved that, if $\vdash_{DNC_1} A$, then $\vdash_{C_1} A$. Hence, by Theorem 4.1 and Theorem 4.2,

 $\vdash_{\mathbf{DNC}_1} \mathbf{A}$ if, and only if $\vdash_{\mathbf{C}_1} \mathbf{A}$.

5. The method of natural deduction applied to the paraconsistent logics $\boldsymbol{C}_{\boldsymbol{n}}$

In this section, we introduce the natural deduction systems $\mbox{NDC}_n,$ for $1{<}n{<}$.

For every logical system NDC_n , 1<n< , we also adopt thirteen deduction rules and these allow us to deduce all the provable formulas of the correspondent axiomatic systems C_n .

Each natural deduction system NDC_n , for 0 n< , is deductively stronger than NDC_{n+1} , and this property is transmitted to every one of the strong negations " $_n$ ".

In every logical system \textbf{NDC}_n , 1 < n <, specific restrictions are imposed on some of the deduction rules. As for instance, in every \textbf{NDC}_n , 1 < n <, the application of the *reductio ad absurdum* is conditioned to the previous appearing in the proof of an adequate composed regular formula of degree n.

The rules of deduction of NDC_n , 1 < n <, have the same formulations given in NDC_1 , excepting for the following three cases:

Restricted Principle of Negation Introduction [or *Reductio ad Absurdum* restricted] (I - \neg_n (rest))

Distributive Rule of Negation into Disjunction (DND_n(rest))

```
s \qquad \neg\, A \& \neg\, B \qquad p,\,q,\,r,\, DND_n(rest)
```

Distributive Rule of Negation into Implication (DNI_n(rest))

```
\begin{array}{lll} : & : & : \\ p & A^{(n)} & (or \, B^{(n)}) \\ : & : & : \\ q & B^{(n)} & (or \, A^{(n)}) \\ : & : & : \\ r & \neg (A \ B) \\ : & : & : \\ s & A \& \neg B & p, q, r, DNI_n(rest) \end{array}
```

The logical equivalence between every system NDC_n and the corresponding C_n , 1 < n <, is obtained following step by step the procedures developed for the case NDC_1 and C_1 .

6. The method of natural deduction applied to the paraconsistent logic $\mathbf{C}_{\cdot\cdot}$

In this section, we introduce a natural deduction system, the system **NDC**, equivalent to the paraconsistent logic **C**. The rules of **NDC** are the same as presented to **NDC**₁, without the Rules E - \neg (rest), DNC, DND(rest) and DNI(rest).

The proof of the logical equivalence between the systems NDC and C is immediate, from the previous sections.

We observe that the logical equivalence between the propositional part of the system **NC** *, introduced in Raggio [18], and our system **NDC** is immediate.

A natural deduction system introduced by Alves [1] and the system NNC presented by Pereira and Moura [16] have the same deduction rules as our system NDC. Nevertheless, in our work, we obtain the system NDC by a natural construction, from the hierarchy $DNC_n,\, 1\ n<$.

7. Final remarks

Although the proof of the logical equivalence between Da Costa's axiomatic systems C_n , 1 n< , and our natural deduction systems guarantees the soundness and completeness of the systems NDC_n , 1 n< , we developed these syntactical and semantical results for the natural deduction

systems NDC_n , 1 n< . Our goal in improving these results is to obtain an autonomous development to the systems NDC_n , 1 n< .

Alves [1] introduces the concept of paraconsistent valuation and quasi-matrices, and proves soundness, completeness and decidability of the system C_1 .

Loparic [13], based on Alves's paper proves soundness, completeness and decidability of the system ${\bf C}$.

Loparic and Alves [14], based on Alves [1] and Da Costa and Alves [7], modify the conditions of Alves's definitions of valuation and prove soundness, completeness and decidability of the systems C_n , 1 $\,$ n< .

The definition introduced by Loparic and Alves is the following:

Definition. If is the set of formulas of C_n , 1 n< , a valuation for C_n is a function : $\{0,1\}$ such that:

```
1. If (A) = 0, then (\neg A) = 1;

2. If (\neg \neg A) = 1, then (A) = 0;

3. (A \& B) = 1 if, and only if, (A) = 1 and (B) = 1;

4. (A \ B) = 1 if, and only if, either (A) = 1 or (B) = 1;

5. (A \ B) = 1 if, and only if, either (A) = 0 or (B) = 1;

6. If (A^{n-1}) = (\neg A^{n-1}), then (A^n) = 0;

7. If (A) = (\neg A), then (\neg A^1) = 1;

8. If (A) (\neg A), (B) (\neg B), then ((A \# B)) (\neg (A \# B)), where \# is \&, or .
```

We can introduce a new semantics directly connected to NDC_n , 1 n< , in which a valuation for NDC_n , 1 n< , is a function : $\{0,1\}$ such that the following conditions (7), (8) and (9) replace the condition 8 above:

```
7. If (\neg (A \& B)) = 1, then (\neg A) = 1 or (\neg B) = 1;

8. If ((A)^{(n)}) = ((B)^{(n)}) = (\neg (A B)) = 1, then (\neg A \& \neg B) = 1;

9. If ((A)^{(n)}) = ((B)^{(n)}) = (\neg (A B)) = 1, then (A \& \neg B) = 1.
```

By using our new definition of paraconsistent valuation, the properties of maximal consistent sets can be extended to maximal non-trivial sets

and we can directly prove the soundness and completeness of the systems $\boldsymbol{NDC_n},\, 1\ n <\ .$

Another observation concerns the deductive efficiency of NDC_n , 1 n< , relative to the formulation presented in Alves [1]. Alves introduces natural deduction systems for the C_n , 1 n , through the following rules:

In these systems, instead of our Rule I - \neg_n (rest), we find the Rule \neg_3 . Alves's formulation is sustained by the following result stated by Da Costa:

"We could see, without great difficulties that in C_n the postulate 'B^(n) ((A B) ((A ¬ B) ¬ A))' can be substituted by schema B^(n)&B&¬B K".

In fact, the rules o_i', o_i'', o_i''' above constitute a transliteration of Da Costa's Axioms 12, 13 and 14, respectively.

We observe that the Rules DNC, $DND_n(rest)$, $DNI_n(rest)$ of our systems NDC_n are new, not rewritten from Da Costa's axioms like Alves's

rules o', o'' and o'''. The Rule I - \neg_n (rest) emphasizes that in NDC_n , (and C_n), 1 n< , the role of the Principle of Non-contradiction is, in a certain sense, restricted. We think that these rules and I - \neg_n (rest) are better applicable to actual derivations in mathematical proofs.

For example, it is very easy to derivate $A^{(n)}\&B^{(n)}$ $(A\&B)^{(n)}$ in \textbf{NDC}_n , 1 n< , but, it is difficult to derivate $\neg(A\&B)$ $(\neg A \neg B)$ in Alves's systems.

A final consideration results from the study of structure of proofs in $\mathbf{NDC}_n.$ It allows us to formulate two new natural deduction systems logically equivalent to $\mathbf{NDC}_n,~1~n<~.$

A first system equivalent to NDC_n is obtained by substitution of Rule I - \neg_n (rest) by the following rule:

Restricted Principle of Negation Elimination [E - \neg_n (rest)]

Another system which is logically equivalent to NDC_n is obtained by substitution of Rule I - \neg_n (rest) by:

Restricted Principle of Negation Introduction $[I_2 - \neg_n(rest)]$

If we adopt I_2 - \neg_n (rest) as our primitive deduction rule in **NDC**_n, we can prove that the Non-Constructive Dilemma(NDC) is a derived rule.

We observe that, while in our original systems \textbf{NDC}_n , 1 n< , the Rule I - \neg_n (rest) emphasizes the non-contradiction, in these two systems the Rules E - \neg_n (rest) and I₂ - \neg_n (rest) emphasize the weak negation of the systems.

Carnielli and Lima-Marques [4] and Buchsbaum & Pequeno [2] introduce tableaux type systems equivalent to the systems $\mathbf{C}_1^=$ and \mathbf{C}_1^* , respectively, and prove the decidability of these systems.

In a future paper we shall present and analyze a new hierarchy of tableaux systems $\textbf{TNDC}_n,\ 1\ n<$, equivalent to the hierarchy $\textbf{NDC}_n,\ 1\ n<$, comparing them to Carnielli's tableaux and Buchsbaum's tableaux, and prove the decidability of these systems. We shall prove the decidability of these systems $\textbf{TNDC}_n,\ 1\ n<$.

Milton Augustinis de Castro, milton@obelix.unicamp.br Itala Maria Loffredo D'Ottaviano, logica@cle.unicamp.br

REFERENCES

- [1] ALVES, E.H., *Lógica e inconsistência: um estudo dos cálculos C_n*, *1*≤n≤ω, São Paulo, Universidade de São Paulo, 1976 (Master Dissertation).
- [2] BUCHSBAUM, A., PEQUENO, T., "A reasoning method for a paraconsistent logic", *Studia Logica*, 1993, vol. 52, p. 281-289.
- [3] CASTRO, M. A. de, *O método de dedução natural aplicado às lógicas proposicionais paraconsistentes* C_n . Campinas: Universida-de Estadual de Campinas. 1998 (Master Dissertation).
- [4] CARNIELLI, W.A., LIMA-MARQUES, M., "Reasoning under inconsistent knowledge", *Journal of Applied Non-Classical Logics*, 1992, vol. 2, n.1, p. 49-79.
- [5] DA COSTA, N.C.A., Sistemas formais inconsistentes. Paraná: Universidade Federal do Paraná. 1963 (Thesis).
- [6] DA COSTA, N.C.A., "On the theory of inconsistent formal systems", *Notre Dame Journal of Formal Logic*, 1974, vol. 15, p. 497-510.
- [7] DA COSTA, N.C.A, ALVES, E.H., "A semantical analysis of the cal-

- culi C_n ", Notre Dame Journal of Formal Logic, 1977, vol. 18, p. 621-630.
- [8] D'OTTAVIANO, I.M.L., "On the development of paraconsistent logic and Da Costa's work", *The Journal of Non-Classical Logic*, 1990, vol. 7, no. 1/2, p. 89-152.
- [9] FITCH, F.B., Symbolic logic: an introduction, Ronald Press, New York, 1952.
- [10] GENTZEN, G., Investigations into logical deduction (Untersuchungen über das logische Schliessen), in SZABO, ME., ed, The Colleted Papers of Gerhard Gentzen, North-Holland Publishing, Amsterdam, 1969, p. 68-131.
- [11] JASKOWSKI, S., "On the rules of suppositions in formal logic", *in* MCCALL, S., ed, *Polish Logic 1920-1939*, The Clarendon Press, Oxford, 1967, p. 232-258.
- [12] KLEENE, S.C., *Introduction to metamathematics*, North Holland, Amsterdam, 1952.
- [13] LOPARIC, A., "Une étude sémantique de quelques calculs propositionnels", *C.R. Acad. Sc. Paris*, 1977, vol. 284A, p. 835-838.
- [14] LOPARIC, A., ALVES. E.H., "The semantics of the systems C_n of Da Costa", *in* "Brazilian Conference On Mathematical Logic", 3st. Ed. A.I. Arruda, N.C.A. Da Costa, A.M., Sette. *Proceedings*, Sociedade Brasileira de Lógica, São Paulo, 1980, p. 161-162.
- [15] MARCOS, J., Semânticas de traduções possíveis. Campinas: Universidade Estadual de Campinas, 1999 (Master Dissertation).
- [16] PEREIRA, L.C.P.D., MOURA, J.E. de A., "Some aspects of C in natural deduction version 1." [S.n.], Manuscript, to appear.
- [17] RAGGIO, A.R., "Propositional sequence-calculi for inconsistent systems", *Notre Dame Journal of Formal Logic*, 1968, vol. 9, no. 4, p. 359-366
- [18] RAGGIO, A.R., "A proof-theoretic analysis of Da Costa's C *", *in* "Brazilian Conference On Mathematical Logic", 1st Ed. A. I. Arruda, N.C.A. Da Costa, R. Chuaqui, *Proceedings*, Marcel Dekker, New York, 1978, p. 233-240.