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Abstract
  In this paper, by using the method of natural deduction, via the method of subordi-
nate proofs, we develop a hierarchy of natural deduction logical systems NDCn

containing just deduction rules (or deduction schemata) with no axiom schema. We
prove that these systems NDCn, 1≤n≤ω, are logically equivalent to the systems of
Da Costa’s hierarchy of paraconsistent logics Cn, 1≤n≤ω. Some of the deduction
rules used to introduce these systems are new and do not correspond to Da Costa’s
axioms rewritten, permitting the definition of a new paraconsistent semantics, such
that soundness and completeness of the systems NDCn, 1≤n<ω, may be directly ob-
tained. Other natural deduction systems logically equivalent to Da Costa’s systems
Cn, 1≤n≤ω, are also introduced.

1. Introduction
A deductive theory T is said to be inconsistent if it has as theorems a

formula and its negation; otherwise, T is said to be consistent. A deductive
theory T is said to be trivial if every formula of its language is a theorem;
otherwise, T is said to be non-trivial.

If a theory T has as its underlying logic the classical logic, the de-
duction of a contradiction leads to its trivialization. Therefore, in theories
based on classical logic, to deduce a contradiction is equivalent to trivialize
them.
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A logic is paraconsistent if it can be used as the underlying logic to
inconsistent but non-trivial theories, which we call paraconsistent theories.

D’Ottaviano [8] points that in paraconsistent logic the role of the
Principle of Non-contradiction is, in a certain sense, restricted. Although in
those logics the Principle of Non-contradiction is not necessarily invalid,
from a formula and its negation it is not possible, in general, to deduce any
other formula.

Da Costa [5] introduced his hierarchy of first-order logics for the
study of inconsistent yet non-trivial theories: the hierarchy of propositional
calculi Cn, 1≤n≤ω, the hierarchy of predicate calculi Cn, 1≤n≤ω, the hierar-
chy of predicate calculi with equality Cn

=, 1≤n≤ω, and the hierarchy of
calculi of descriptions Dn, 1≤n≤ω.

Da Costa, his disciples and collaborators have used the Hilbert-
Fregean style axiomatic method in the study of Da Costa’s hierarchy Cn,
1≤n≤ω. The first work in which this Hilbert-Fregean style was not used in
the construction of paraconsistent systems is due to Raggio [17].

Raggio [17] introduces a hierarchy of sequent calculi CGn, 1≤n≤ω,
trying to solve the problem of the decidability of the systems Cn, 1≤n≤ω.
Raggio proves the equivalence between the sequent calculi CGn, 1≤n≤ω,
and the calculi Cn, 1≤n≤ω, but CGn could not be proved decidable. Con-
tinuing, he constructs a new hierarchy of sequent calculi WGn, 1≤n≤ω, that
are decidable, but in spite of having similar properties to the ones of the
systems Cn, 1≤n≤ω, these two hierarchies of systems are not equivalent.

In Alves [1], systems of natural deduction were introduced for the
hierarchy Cn, 1≤n≤ω, using only deduction rules, but unfortunately Alves
did not study those systems.

As both axiomatizations for the two equivalent systems Cω* and
CGω*, introduced by Da Costa and Raggio respectively, were not suitable
for a proof-theoretic analysis, Raggio [18] presents the system NCω*, logi-
cally equivalent to Da Costa’s system Cω*, using Gentzen’s natural deduc-
tion. This axiomatic system of quantificational paraconsistent logic without
equality has the peculiarity of having the Law of Excluded Middle as its
sole axiom. Pereira and Moura [16], an unpublished work, presents a natu-
ral deduction system with no axiom, the system NNCω, that improves the
propositional part of NCω* introduced in Raggio [18].

Castro [3] applies the method of natural deduction introduced by
Jaskowski [11] and Gentzen [10], through the method of subordinate proofs
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of Fitch [9], to the hierarchy of Da Costa’s propositional paraconsistent
logics Cn, 1≤n≤ω.

In this paper, based in Castro [3], we introduce the hierarchy of natu-
ral deduction systems NDCn, 1≤n≤ω, and show that NDC1 is logically
equivalent to C1; and we sketch the necessary procedures to demonstrate
this equivalence between NDCn and Cn, 2≤n≤ω. In spite of the main syn-
tactical and semantical results, like for instance consistency, soundness and
completeness being natural consequences of the logical equivalence be-
tween the hierarchies Cn and NDCn, 1≤n≤ω, we may prove the soundness
and completeness of our systems directly from the definition of a new para-
consistent semantics, which we introduce in this paper.

In the next section we present Da Costa’s propositional paraconsis-
tent systems Cn, 1≤n≤ω, and some important results about them.

In the third section, we recall the method of natural deduction by
subordinate proofs, and introduce a new natural deduction formulation for
the paraconsistent logic C1, the system NDC1.

In the fourth section, we prove the logical equivalence between C1

and NDC1.
In the fifth and sixth sections, we present a new natural deduction

formulation for the paraconsistent logic Cn, 1≤n≤ω, the systems NDCn,
1≤n≤ω.

In the last section, we discuss some results of the previous sections
and introduce a new paraconsistent semantics relatively to Alves [1]. We
also formulate two new hierarchies of paraconsistent systems such that in
every one of these hierarchies there is a system logically equivalent to the
corresponding system Cn, 1≤n≤ω.

We observe that some of the rules that we use to introduce the sys-
tems NDCn, 1≤n≤ω, are new, not simply corresponding to Da Costa’s axi-
oms rewritten, as it was done by Alves [1].

2. Da Costa’s propositional paraconsistent logics Cn

The language L of Da Costa’s paraconsistent systems Cn, 1≤n≤ω,
has as primitive symbols propositional variables, the connectives ¬, ∨, &,
⊃, and parentheses.

The notions of formula and theorem, as well as the general conven-
tions and notations, are the standard ones, as in Kleene [12].
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Da Costa’s paraconsistent logics were formulated satisfying the con-
ditions:

"I - In C1 it should not be valid, in general, the principle of non
contradiction "

“II - From two contradictory propositions it should not usually
be possible to deduce any proposition”.

The system C1 is the first of the hierarchy of systems of propositional
paraconsistent logics presented by Da Costa [5]. The following definitions
are added to the language L:

A0 =df ¬(A&¬A)
An =df A

0…0 (‘0’ n times)1

A(1) =df  A
0

A(n) =df A
1 & A2 &… & An,

with n ≥ 1, where A1 is A0, A2 is A00, A3 is A000, …, An is A 0…0

(A≡B) =df (A⊃B)&(B⊃A)
∼A =df ¬A&A0.

According to these definitions, A0 is read as “A is a well-behaved
formula” or “A is regular”; An is read as “A is a n-times reiterated regular
formula”; A(n) is read as “A is a composed regular formula of degree n”; the
symbol ≡ corresponds to the usual equivalence; and the connective ∼ is
called “strong negation”.

We observe that the strong negation has all the properties of the clas-
sical negation, since we can prove that (A⊃B)⊃((A⊃∼B)⊃∼A), for every A
and B formulas of C1.

The schemata of axioms and the deduction rules of C1 are the fol-
lowing:

AXIOM 1: A⊃(B⊃A)
AXIOM 2: (A⊃B)⊃(((A⊃(B⊃C))⊃(A⊃C))
AXIOM 3: A&B⊃A
AXIOM 4: A&B⊃B
AXIOM 5: A⊃(B⊃A&B)

                                                     
1 For instance: A00 is ¬(A0&¬(A0)); A000 is  ¬(A00&¬(A00)); and so on.
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AXIOM 6: A⊃A∨B
AXIOM 7: B⊃A∨B
AXIOM 8: (A⊃C)⊃((B⊃C)⊃(A∨B⊃C))
AXIOM 9: ¬¬A⊃A
AXIOM 10: A∨¬A
AXIOM 11: B0⊃((A⊃B)⊃((A⊃¬B)⊃¬A))
AXIOM 12: A0&B0⊃(A&B)0

AXIOM 13: A0&B0⊃(A∨B)0

AXIOM 14: A0&B0⊃(A⊃B)0

RULES: Rule of Modus Ponens (MP)
Substitution Rule (SR).

Axiom 11 corresponds to Da Costa’s insight of paraconsistent logic.
This axiom is just a particular case of the usual reductio ad absurdum. It
asserts that we can apply the reductio ad absurdum  in Da Costa’s paracon-
sistent logic only when the antecedent B is a “well-behaved” formula.

The last three axioms may be interpreted as the conditions for propa-
gation of “well-behavior”.

In order to obtain the systems Cn, 1≤n<ω, we replace Axioms 11 to 14:

AXIOM 11n: B(n)⊃((A⊃B)⊃((A⊃¬B)⊃¬A))
AXIOM 12n: A(n)&B(n)⊃(A&B) (n)

AXIOM 13n: A(n)&B(n)⊃(A∨B) (n)

AXIOM 14n: A(n)&B(n)⊃(A⊃B) (n)

In every Cn, 1≤n<ω, the strong negation ∼ is defined by:
∼nA =df ¬A&A(n) ,

where n corresponds to each Cn.
We observe that in every Cn the strong negation has all the properties

of classical negation, since we can prove (A⊃B)⊃((A⊃∼nB)⊃∼nA)) in Cn,
1≤n≤ω.

Finally, the system Cω is defined by:

AXIOM 1 to AXIOM 10 of C1.

We observe that classical propositional logic is considered as the
system C0 of this hierarchy. This logic is, in fact, given by Cω plus reductio
ad absurdum, that is:
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AXIOM 11o: (A⊃B)⊃((A⊃¬B)⊃¬A)).

Now, only in order to better characterize these systems, we state
some of their results. Some of the proofs of these results are in the papers
mentioned in D’Ottaviano [8].

Theorem 2.1. The following schemata are not provable in Cn , 1≤n≤ω:
¬(A&¬A); (A&¬A)⊃B; A⊃¬¬A; ¬A≡∼nA;
A⊃(¬A⊃B); ((A∨B)&¬A)⊃B; (A∨¬A)n; (A⊃A)n;
((A⊃B)&¬B)⊃¬A; ¬(A∨B)≡¬A&¬B; ¬(A&B)≡¬A∨¬B;
¬(A⊃B)≡A&¬B; ¬(¬A&A)⊃((A⊃B)⊃((A⊃¬B)⊃¬A));
¬(¬A&A)⊃¬(A&¬A).

Theorem 2.2. In Cn, 1≤n<ω we have:
Cn

 A∨∼nA; Cn
 A≡∼n∼nA; Cn

 ¬(A&B)⊃¬A∨¬B;

Cn
 ¬∼nA⊃A; Cn

 ∼n¬A⊃A; Cn
 ∼n(A&∼nA);

Cn
 A&∼nA⊃B; Cn

 (A&¬A)n; Cn
 (A)n;

Cn
 (A)n⊃(¬A)n; Cn

 A⊃(∼nA⊃B); Cn
¬(A&¬A)⊃¬(¬A&A).

Theorem 2.3. All the rules and valid schemata of the classical positive
propositional calculus are valid in Cn, 1≤n<ω.

Theorem 2.4. The following schemata are not provable in Cω:
((A⊃B)⊃A)⊃A;  (A⊃B)∨(B⊃A);  ¬(A&B)⊃¬A∨¬B.

Theorem 2.5. No schema of type ¬A is a theorem in Cω.

Theorem 2.6. If A is a theorem of the intuitionistic positive propositional
calculus, then A is a theorem of Cω.

Theorem 2.7. (Deduction Theorem) If Γ is a set of formulas, we have that
Γ, A Cn B if, and only if, Γ Cn 

A⊃B, 1≤n≤ω.

The following theorem concerns regular formulas.
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Theorem 2.8. If Γ is a set of formulas and A1, A2, …, Am are the atomic
components of the formulas of Γ∪{A}, then a necessary and sufficient
condition for Γ C0 

A is that Γ, A1
(n), A2

(n), …, Am
(n) Cn 

A, for 1≤n<ω.

Theorem 2.9. (Arruda) Every system in the hierarchy C0, C1,…, Cn,…, Cω

is strictly stronger than those which follow it.

Definition 2.10. Let ℑ be the set of all formulas of L. A set of formulas Γ
is said to be trivial if the set of consequences of Γ is ℑ; Γ is said to be in-
consistent (relatively to the basic negation ¬) if there is at least one formula
A such A and ¬A are both consequences of Γ.

Theorem 2.11. Every Cn, 1≤n≤ω, is consistent and non-trivial.

Theorem 2.12. (Arruda) The systems Cn, 1≤n≤ω, are not decidable by
finite matrices.

We observe that the Replacement Theorem2, although valid in C0, is
not valid in general in Cn, 1≤n≤ω.

A very recent study on the systems Cn, 1≤n≤ω, from a new semanti-
cal approach, appears in Marcos [15].

3. The method of natural deduction applied to the paraconsistent logic
C1

In this section, we introduce the system of natural deduction NDC1,
using the method of natural deduction a la Fitch [9]. The language of
NDC1 is the language of C1.

We adopt thirteen deduction rules, which allow us to deduce exactly
the theorems of the axiomatic system C1. The system NDC1 is the first of a
hierarchy of systems of natural deduction for Da Costa’s paraconsistent
propositional logics Cn, 1≤n≤ω.

The system NDC1 is introduced through the following rules:

                                                     
2 This special theorem of substitution states: if A and B are equivalent, they

may be substituted for each other at any point in an expression C.
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Rule of transport

Repetition (R)
: :
n A
: :
k A (R, n)

Reiteration (R)
: :
n A
: :
k A (Reit, n)

Introduction rules

Implication Introduction (I-⊃)
: :
k A supposition
: :
s B
s+1 A⊃B k-s, I - ⊃

Disjunction Introduction (I-∨)
: :
k A ( or B)
: :
s A∨B (or A∨B) k, I - ∨

Conjunction Introduction (I-&)
: :
k A (or B)
: :
s B (or A)
: :
u A&B k, s, I - &
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Restricted Rule of Negation Introduction [or restricted Reductio ad
Absurdum] (I - ¬ (rest))

: :
p A 0

: :
k B supposition
: :
r A    (or ¬A)
: :
t ¬A  (or A)
v ¬B p, k-t, I - ¬(rest)

Distributive Rule of Negation into Conjunction (DNC)
: :
p ¬(A&B)
: :
s ¬A∨¬B p, DNC

Distributive Rule of Negation into Disjunction (DND(rest))
: :
p A 0 (or B0)
: :
q B0 (or A0)
: :
r ¬(A∨B)
: :
s ¬A&¬B p, q, r, DND(rest)

Distributive Rule of Negation into Implication (DNI(rest))
: :
p A 0 (or B0)
: :
q B0 (or A0)
: :
r ¬(A⊃B)
: :
s A&¬B p, q, r, DNI(rest)
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Non-Constructive Dilemma (NDC)
: :
p A supposition
: :
r B
s ¬A supposition
: :
t B
t+1 B p-r, s-t, NCD

Elimination rules

Implication Elimination (E - ⊃)
: :
p A⊃B (or A)
: :
q A (or A⊃B)
: :
r B p, q, E - ⊃

Disjunction Elimination (E - ∨)
: :
p A∨B
: :
q A supposition
: :
r C
s B supposition
: :
t C
t+1 C p, q-r, s-t, E - ∨

Conjunction Elimination (E - &)
: :
p A&B
: :
q A (or B) p, E - &
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Double Negation Elimination (E -  ¬¬)
: :
p ¬¬A
: :
q A p, E - ¬¬

A formal proof in NDC1 is a finite sequence of items (formulas)
where each one of them is either a premise (or hypothesis), an axiom of the
system, or is logically derived from previous ones in the sequence by appli-
cation of only one deduction rule. A formal proof that possesses one or
more premises is said to be a hypothetical proof, and a formal proof that
has no premises is called a categorical proof. A subordinate proof (of a
given proof) is a proof that begins with an additional premise (or supposi-
tion). All subordinate proofs are subordinated to a principal proof and all of
them must be eliminated in order to return to the main ones.

If a proof and all its subordinate proofs (if any) use only deduction
rules, it will be said to be an introduction-elimination proof  (or an intelim
proof ).

If there is a proof of Bn in NDC1 from the premises A1, A2, … An,
this is denoted by A1, A2, … An NDC1 Bn.

If Bn is the final item of a formal proof, then this formula is said to be
provable or to be a conclusion.

If there is a proof of Bn in NDC1 from the empty set of premises, this
formula is said to be a theorem, what is denoted by NDC1 Bn.

Graphically, we represent a proof in NDC1 by a vertical sequence of
items (formulas or subproofs), and we develop a subproof in a parallel ver-
tical sequence of items to the immediate right of the principal sequence of
items.

Let NDC0 be the classical system of natural deduction as in
Gentzen [10]. The difference between NDC1 and NDC0 is not only in the
amount of adopted rules, but also in the restrictions imposed to certain rules
of deduction. In NDC1, for instance, the application of the rule of reductio
ad absurdum is conditioned to the previous presence of a certain regular
formula in the demonstration, while in NDC0 this is not necessary.
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4. The logical equivalence between the system C1 and the system NDC1

In order to prove the syntactical equivalence between Da Costa’s
paraconsistent system C1 and our natural deduction system NDC1, we shall
first prove that every theorem of C1 is provable in NDC1; second, we shall
prove that every deduction rule of the system NDC1 is deducible in the
axiomatic system C1.

Theorem 4.1. Every theorem of the system C1 is a theorem of the system of
natural deduction NDC1.

Proof
We have to prove that every axiom schema of C1 is a theorem in

NDC1. In order to illustrate this we shall only present the complete proofs
of Axioms 11 and 12. The proofs of Axiom 1-10 are simple and we shall
not make them. The proofs of Axioms 13 and 14 are similar to the proof of
Axiom 12.

1 Axiom 11: B0⊃((A⊃B)⊃((A⊃¬B)⊃¬A))
1     B0 supposition
2       A⊃B supposition
3        A⊃¬B supposition
4    A supposition
5           A⊃B 2, Reit
6    B 4, 5, E - ⊃
7    A⊃¬B 3, Reit
8   ¬B 4, 7, E - ⊃
9 ¬A 1, 4- 8, I - ¬(rest)
10      (A⊃¬B)⊃¬A 3-9, I - ⊃
11   (A⊃B)⊃((A⊃¬B)⊃¬A) 2-10, I - ⊃
12 B0⊃((A⊃B)⊃((A⊃¬B)⊃¬A)) 1-11, I - ⊃
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2 Axiom 12: A0&B0⊃(A&B)0

1     A0&B0 supposition
2     A0 1, E - &
3     B0 1, E - &
4       ¬[(A&B)0] supposition
5       ¬[¬[(A&B)&¬(A&B)]] 4, def. of regular formula
6        [(A&B)&¬(A&B)] 5, E - ¬¬
7        A&B 6, E - &
8        A 7, E - &
9        B 7, E - &
10      ¬(A&B) 6, E - &
11      ¬A∨¬B 10, DNC
12        ¬A supposition
13        ¬A 12, R
14        ¬B supposition
15           A supposition
16   B 9, Reit
17     ¬B 14, Reit
18 ¬A 3, 15-17, I -¬(rest)
19      ¬A 11, 12-13, 14-18, E - ∨
20   ¬¬[(A&B)0] 2, 4-19, I - ¬(rest)
21    (A&B)0 20, E - ¬¬
22 A0&B0⊃(A&B)0 1-21, I - ⊃

The rule of Modus Ponens of C1 corresponds to the Implication
Elimination Rule of NDC1.

For every application of the Substitution Rule in a theorem of C1,
there is a corresponding proof in NDC1.

We observe that as usually in axiomatic systems and in natural de-
duction systems, C1 and NDC1 have the following Assertion Property
(AP):

If S A then Γ S A, for every set Γ of formulas of the language of S,
S being either C1 or NDC1.

Furthermore:
If Γ C1

 A, then Γ NDC1
 A.
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Theorem 4.2. Every deduction rule of the system NDC1 is provable in the
axiomatic system C1.

Proof
We shall indicate the proofs of the rules DNC, DND(rest) and

DNI(rest), because they need a special sequence of steps. The proofs of the
other rules are found in the literature.

1) The proof that A C1
 A is immediate.

2) Distributive Rule of Negation into Conjunction (DNC)
The proof of DNC is an immediate consequence of Theorem 2.2

( Cn
 ¬(A&B)⊃(¬A∨¬B)) and Theorem 2.7.

3) Distributive Rule of Negation into Disjunction (DND(rest))

Proof
We have to prove that:
A0& B0, ¬(A∨B) C1

 ¬A&¬B.

By (1), AP, Axiom 1, SR, MP, Axiom 7, Axiom 11, Axiom 6,
Axiom 5 and Deduction Theorem:

(a) C1
 (A∨B)0⊃(¬(A∨B)⊃(B⊃(¬A&¬B))).

By (1), AP, Axiom 1, SR, MP, Axiom 6, Axiom 11, Axiom 5 and
Deduction Theorem:

(b) C1
 (A∨B)0⊃(¬(A∨B)⊃(¬B⊃(¬A&¬B))).

By (1), AP, (A∨B)0 C1
 ¬(A∨B)⊃(B⊃¬A&¬B), (A∨B)0 C1

¬(A∨B)⊃(¬B⊃¬A&¬B), MP, Axiom 10, SR, Axiom 8 and Deduction
Theorem:

(c) C1
 (A∨B)0⊃(¬(A∨B)⊃(¬A&¬B)).

By Axiom 13, SR, (A∨B)0 C1
 ¬(A∨B)⊃(¬A&¬B), Deduction

Theorem, transitivity of implication and MP:
(d) C1

 A0&B0⊃(¬(A∨B)⊃(¬A&¬B)).

By (1), AP, (c), Axiom 13, SR, transitivity of implication and MP:
(e) A0& B0, ¬(A∨B) C1

 ¬A&¬B.

4) Distributive Rule of Negation into Implication (DNI(rest))



NATURAL DEDUCTION FOR PARACONSISTENT LOGIC 17

Proof
We have to prove that:
A0& B0, ¬(A⊃B) C1

 (A&¬B).

The demonstration is obtained through the following sequence of
steps.

By (1), AP, A&B C1
 A, SR, Axiom 5, MP, distributivity of & into

∨, C1
 A0&A&¬A⊃B, Axiom 4, Axiom 8 and Deduction Theorem:

(a) A0&B0 C1
 ¬A∨B⊃(A⊃B).

By (1), AP, Axiom 11, SR, Axiom 1, MP, Axiom 14 and Deduction
Theorem:

(b) A0&B0 C1
 (¬A∨B⊃(A⊃B))⊃(¬(A⊃B)⊃¬(¬A∨B)).

By (a), (b) and MP:
(c) A0&B0 C1

 ¬(A⊃B)⊃¬(¬A∨B).

By (1), Axiom 3, SR, AP, MP, Axiom 4, Axiom 9, Axiom 5 and
Deduction Theorem:

(d)  A0 C1
 (¬A&¬¬A)⊃(A&¬A).

By (1), Axiom 11, SR, AP, MP, (d), Axiom 1, definition of regular
formula and Deduction Theorem:

(e) C1
 A0⊃(¬A)0.

By (1), Axiom 3, SR, AP, MP, (e), Axiom 4 and Axiom 5:
(f) A0&B0 C1

 (¬A)0&B0.

By (f), 3(d), SR, AP and MP:
(g) A0&B0, ¬(¬A∨B) C1

 (¬¬A&¬B).

By (g), Axiom 3, SR, Axiom 9, transitivity of implication, MP, AP,
Axiom 4, Axiom 5 and Deduction Theorem:

(h) A0&B0 C1
 ¬(¬A∨B)⊃(A&¬B).

By (c), (h), transitivity of implication, SR, AP and MP:
(i) A0&B0 C1

 ¬(A⊃B)⊃(A&¬B).

By (1), AP, (i) and MP:
(j) A0&B0, ¬(A⊃B) C1

 (A&¬B).

So, we have proved that, if Γ DNC1
 A, then Γ C1

 A. Hence, by

Theorem 4.1 and Theorem 4.2,

Γ DNC1
 A if, and only if Γ C1

 A.
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5. The method of natural deduction applied to the paraconsistent logics
Cn

In this section, we introduce the natural deduction systems NDCn, for
1<n<ω.

For every logical system NDCn, 1<n<ω, we also adopt thirteen de-
duction rules and these allow us to deduce all the provable formulas of the
correspondent axiomatic systems Cn.

Each natural deduction system NDCn, for 0≤n<ω, is deductively
stronger than NDCn+1, and this property is transmitted to every one of the
strong negations “∼n”.

In every logical system NDCn, 1<n<ω, specific restrictions are im-
posed on some of the deduction rules. As for instance, in every NDCn,
1<n<ω, the application of the reductio ad absurdum is conditioned to the
previous appearing in the proof of an adequate composed regular formula
of degree n.

The rules of deduction of NDCn, 1<n<ω, have the same formulations
given in NDC1, excepting for the following three cases:

Restricted Principle of Negation Introduction [or Reductio ad Absur-
dum restricted] (I - ¬n (rest))

: :
p A(n)

: :
k B supposition
: :
r A (or ¬A)
: :
t ¬A (or A)
v ¬B p, k- t, I - ¬n(rest)

Distributive Rule of Negation into Disjunction (DNDn(rest))
: :
p A (n) (or B(n))
: :
q B(n) (or A(n))
: :
r ¬(A∨B)
: :
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s ¬A&¬B p, q, r, DNDn(rest)

Distributive Rule of Negation into Implication (DNIn(rest))
: :
p A (n) (or B(n))
: :
q B (n) (or A(n))
: :
r ¬(A⊃B)
: :
s A&¬B p, q, r, DNIn(rest)

The logical equivalence between every system NDCn and the corre-
sponding Cn, 1<n<ω, is obtained following step by step the procedures
developed for the case NDC1 and C1.

6. The method of natural deduction applied to the paraconsistent logic
C

In this section, we introduce a natural deduction system, the system
NDCω, equivalent to the paraconsistent logic Cω. The rules of NDCω are
the same as presented to NDC1, without the Rules E - ¬(rest), DNC,
DND(rest) and DNI(rest).

The proof of the logical equivalence between the systems NDCω and
Cω is immediate, from the previous sections.

We observe that the logical equivalence between the propositional
part of the system NCω*, introduced in Raggio [18], and our system NDCω

is immediate.
A natural deduction system introduced by Alves [1] and the system

NNCω presented by Pereira and Moura [16] have the same deduction rules
as our system NDCω. Nevertheless, in our work, we obtain the system
NDCω by a natural construction, from the hierarchy DNCn, 1≤n<ω.

7. Final remarks
Although the proof of the logical equivalence between Da Costa’s

axiomatic systems Cn, 1≤n<ω, and our natural deduction systems guaran-
tees the soundness and completeness of the systems NDCn, 1≤n<ω, we
developed these syntactical and semantical results for the natural deduction
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systems NDCn, 1≤n<ω. Our goal in improving these results is to obtain an
autonomous development to the systems NDCn, 1≤n<ω.

Alves [1] introduces the concept of paraconsistent valuation and
quasi-matrices, and proves soundness, completeness and decidability of the
system C1.

Loparic [13], based on Alves’s paper proves soundness, complete-
ness and decidability of the system Cω.

Loparic and Alves [14], based on Alves [1] and Da Costa and
Alves [7], modify the conditions of Alves’s definitions of valuation and
prove soundness, completeness and decidability of the systems Cn, 1≤n<ω.

The definition introduced by Loparic and Alves is the following:

Definition. If ℑ is the set of formulas of Cn, 1≤n<ω, a valuation for Cn is a
function ν: ℑ → {0, 1} such that:

1. If ν(A) = 0, then ν(¬A) = 1;
2. If ν(¬¬A) = 1, then ν(A) = 0;
3. ν(A&B) = 1 if, and only if, ν(A) = 1 and ν(B) = 1;
4. ν(A∨B) = 1 if, and only if, either ν(A) = 1 or ν(B) = 1;
5. ν(A⊃B) = 1 if, and only if, either ν(A) = 0 or ν(B) = 1;
6. If ν(An-1) = ν(¬An-1), then ν(An) = 0;
7. If ν(A) = ν(¬A), then ν(¬A1) = 1;
8. If ν(A) ≠ ν(¬A), ν(B) ≠ ν(¬B), then ν((A#B)) ≠ ν(¬(A#B)),

where # is &, ∨ or ⊃.

We can introduce a new semantics directly connected to NDCn,
1≤n<ω, in which a valuation for NDCn, 1≤n<ω, is a function ν: ℑ → {0, 1}
such that the following conditions (7), (8) and (9) replace the condition 8
above:

7. If ν(¬(A&B)) = 1, then ν(¬A) = 1 or ν(¬B) = 1;
8. If ν((A)(n)) = ν((B)(n)) = ν(¬(A∨B)) = 1, then ν(¬A&¬B) = 1;
9. If ν((A)(n)) = ν((B)(n)) = ν(¬(A⊃B)) = 1, then ν(A&¬B) = 1.

By using our new definition of paraconsistent valuation, the proper-
ties of maximal consistent sets can be extended to maximal non-trivial sets
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and we can directly prove the soundness and completeness of the systems
NDCn, 1≤n<ω.

Another observation concerns the deductive efficiency of NDCn,
1≤n<ω, relative to the formulation presented in Alves [1]. Alves introduces
natural deduction systems for the Cn, 1≤n≤ω, through the following rules:

[A]
⊃i B ⊃e A     A⊃B &i A         B

                                      
A⊃B      B    A&B

&e A&B  A&B ∨i   A    B
                                
   A     B A∨B A∨B

[A] [B]
∨e A∨B C C

                          
C

oi’ A(n)    B(n) oi’’ A(n)   B(n) oi’’’ A(n)   B(n)

                                           
(A⊃B)(n)  (A&B)(n)  (A∨B)(n)

[A]        [¬A]
¬1 C             C ¬2 ¬¬A ¬3 A(n)   A   ¬A

                                                   
        C       A       B

In these systems, instead of our Rule I - ¬n(rest), we find the Rule
¬3. Alves’s formulation is sustained by the following result stated by
Da Costa:

"We could see, without great difficulties that in Cn the postu-
late ‘B(n)⊃((A⊃B)⊃((A⊃¬B)⊃¬A))’ can be substituted by
schema B(n)&B&¬B⊃K".

In fact, the rules oi’, oi’’, oi’’’ above constitute a transliteration of
Da Costa’s Axioms 12, 13 and 14, respectively.

We observe that the Rules DNC, DNDn(rest), DNIn(rest) of our sys-
tems NDCn are new, not rewritten from Da Costa’s axioms like Alves’s
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rules o’, o’’ and o’’’. The Rule I - ¬n(rest) emphasizes that in NDCn ,(and
Cn), 1≤n<ω, the role of the Principle of Non-contradiction is, in a certain
sense, restricted. We think that these rules and I - ¬n(rest) are better appli-
cable to actual derivations in mathematical proofs.

For example, it is very easy to derivate A(n)&B(n)⊃(A&B)(n) in NDCn,
1≤n<ω, but, it is difficult to derivate ¬(A&B)⊃(¬A∨¬B) in Alves’s sys-
tems.

A final consideration results from the study of structure of proofs in
NDCn. It allows us to formulate two new natural deduction systems logi-
cally equivalent to NDCn, 1≤n<ω.

A first system equivalent to NDCn is obtained by substitution of Rule
I - ¬n(rest) by the following rule:

Restricted Principle of Negation Elimination [E - ¬n(rest)]
: :

p ¬C supposition
: :
q B(n)

: :
r B  (or ¬B)
: :
s ¬B (or B)
t C p-s, E - ¬n(rest)

Another system which is logically equivalent to NDCn is obtained by
substitution of Rule I - ¬n(rest) by:

Restricted Principle of Negation Introduction [I2 - ¬n(rest)]
: :
p C supposition
: :
q B(n)

: :
r B  (or ¬B)
: :
s ¬B (or B)
t ¬C p-s, I2 - ¬n(rest).



NATURAL DEDUCTION FOR PARACONSISTENT LOGIC 23

If we adopt I2 - ¬n(rest) as our primitive deduction rule in NDCn, we
can prove that the Non-Constructive Dilemma(NDC) is a derived rule.

We observe that, while in our original systems NDCn, 1≤n<ω, the
Rule I - ¬n(rest) emphasizes the non-contradiction, in these two systems the
Rules E - ¬n(rest) and I2 - ¬n(rest) emphasize the weak negation of the
systems.

Carnielli and Lima-Marques [4] and Buchsbaum & Pequeno [2] in-
troduce tableaux type systems equivalent to the systems C1

= and C1
*, re-

spectively, and prove the decidability of these systems.
 

In a future paper we shall present and analyze a new hierarchy of
tableaux systems TNDCn, 1≤n<ω, equivalent to the hierarchy NDCn,
1≤n<ω, comparing them to Carnielli’s tableaux and Buchsbaum’s tableaux,
and prove the decidability of these systems. We shall prove the decidability
of these systems TNDCn, 1≤n<ω.
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Itala Maria Loffredo D’Ottaviano, logica@cle.unicamp.br
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