Takahito Aoto
Hiroakira Ono

NON-UNIQUENESS OF NORMAL PROOFS FOR
MINIMAL FORMULAS IN
IMPLICATION-CONJUNCTION FRAGMENT OF BCK

Abstract
A minimal formula of a given logic L is a formula which is provable in L and
is not a non-trivial substitution instance of other provable formulas in L. In
[5], Y. Komori asked whether normal proofs of minimal formulas are unique in
the implicative fragments of natural deduction systems for the intuitionistic
logic and the logic BCK. It was already shown that the answer is positive for
BCK, while it is negative for the intuitionistic logic ([3], [8], [9]). The present
paper shows normal proofs for minimal formulas are not necessarily unique for
the implication-conjunction fragment of BCK. This result contradicts sharply
with the uniqueness of normal proofs of balanced formulas in the implication-
conjunction fragment of the intuitionistic logic ([2], [6]).

1. Uniqueness of normal proofs

We will use \rightarrow and \wedge for the implication and conjunction throughout the
present paper.

For a given logic L, we say that a formula A is minimal in L if and
only if (1) A is provable in L and (2) if A is a substitution instance of other
provable formula A' then the substitution is trivial, i.e. it is a renaming of
propositional variables. Y. Komori put a question in [5] whether normal
proofs of minimal formulas are unique in the natural deduction systems for
the implicative fragments of the intuitionistic logic and the logic BCK.
The logic BCK can be usually formulated as a sequent calculus LBCK
obtained from the intuitionistic system LJ by eliminating the contraction
rule. Corresponding to this, the natural deduction system NBCK for the
implicative fragment of BCK can be defined as a system obtained from
the intuitionistic system NJ by restricting the application of the \rightarrow intro-
duction in such a way that at most one occurrence of the assumption is
cancelled.

Both G. E. Mints [8] and M. Tatsuta [9] solved independently Y. Ko-
mori's problem for the intuitionistic logic negatively. More precisely, there
exists a minimal formula in the implicational intuitionistic logic which does
not have unique $\beta\eta$-normal proofs. On the other hand Hirokawa [3] proved
that any minimal formula in the implicational BCK has the unique β-
normal proof. Notice here that any β-normal proof of a minimal formula
in the implicational BCK is also $\beta\eta$-normal. It was pointed out also by
A. Wroński that this result can be shown indirectly by combining the
uniqueness result by G. E. Mints [6] and A. A. Babaev & S. V. Solov-
that any minimal formula in the implicational BCK is balanced.

It seems to be possible to extend the above uniqueness result of the
implicational fragment to the implication-conjunction fragment. For, the
uniqueness result on balanced formulas also holds for the implication-
conjunction fragment. On the other hand, by a slight observation, it can be
seen that S. Jaśkowski’s result does not hold any more for the implication-
conjunction fragment. In the following, we will show that there exists a
minimal formula in the implication-conjunction fragment of BCK whose
$\beta\eta$-normal proofs are not unique.

Finally, we remark that the above uniqueness result on balanced for-
mulas in the implication-conjunction fragment of NJ by G. E. Mints and
A. A. Babaev & S. V. Solovjov can be strengthen to a yet weaker condition
(see [1] for details).

2. An example of minimal formula without
unique normal proofs

Before giving an example of such a minimal formula, it is necessary to give
a precise definition of the natural deduction system for the implication-
conjunction fragment of BCK. Certain complications will occur in the def-
ition, since the implication is a multiplicative connective while the con-
junction is additive.

The natural deduction system for the implication-conjunction frag-
ment consists of following rules.
1. \rightarrow introduction

\[
\begin{array}{c}
[A]^{(1)} \\
\vdots \\
B \\
A \rightarrow B
\end{array}
\]

(1)

Here $[A]^{(1)}$ means that the assumptions $[A]$ in \mathcal{D} may be cancelled along with the application of this inference.

2. \rightarrow elimination

\[
A \rightarrow B \quad A \\
\hline
B
\]

3. \land introduction

\[
A \quad B \\
\hline
A \land B
\]

4. \land eliminations

\[
A \land B \\
\hline
A \\
\hline
B
\]

Next, we will define proofs in NBCK from a multiset of formulas (called assumptions) Γ to a formula A (called the conclusion), inductively as follows.

In the following, $\Gamma \cup \Sigma$ and $\Gamma + \Sigma$ denote the multiset union and the multiset sum for each multiset Γ and Σ, respectively. More precisely, let B be any formula and suppose that the multiplicity of B in Γ and Σ are m and n, respectively. Then, the multiplicity of B in $\Gamma \cup \Sigma$ and $\Gamma + \Sigma$ are $\max\{m, n\}$ and $m + n$, respectively. For instance, the multiset union and the multiset sum of $\{B, C, C, C\}$ and $\{B, B, C, D\}$ are $\{B, B, B, C, C, C, C, D\}$ and $\{B, B, B, B, B, C, C, C, C, C, D\}$, respectively.
1. The figure

\[[A] \]

is a proof from the multiset of assumption \{A\} to the conclusion \(A\).

2. Suppose that \(D\) is a proof from the multiset of assumption \(\Gamma\) to the conclusion \(B\), which is expressed schematically as

\[
\begin{array}{c}
D \\
A \\
B \\
\end{array}
\]

Then the figure

\[
\begin{array}{c}
D \\
A \\
B \\
\end{array}
\]

is a proof from \(\Gamma'\) to \(A \rightarrow B\). Here, \(\Gamma'\) is a multiset obtained from \(\Gamma\) by deleting at most one \(A\), if any.

3. Suppose that \(D_1\) and \(D_2\) are proofs from \(\Gamma\) to \(A \rightarrow B\) and from \(\Sigma\) to \(A\), respectively. Then the figure

\[
\begin{array}{c}
D_1 \\
D_2 \\
A \\
A \\
B \\
\end{array}
\]

is a proof from \(\Gamma + \Sigma\) to \(B\).

4. Suppose that \(D_1\) and \(D_2\) are proofs from \(\Gamma\) to \(A\) and from \(\Sigma\) to \(B\), respectively. Then the figure

\[
\begin{array}{c}
D_1 \\
D_2 \\
A \\
B \\
\end{array}
\]

is a proof from \(\Gamma \cup \Sigma\) to \(A \land B\).

5. Suppose that \(D\) is a proof from \(\Gamma\) to \(A \land B\). Then the figures

\[
\begin{array}{c}
D \\
A \land B \\
A \\
\end{array}
\]

and

\[
\begin{array}{c}
D \\
A \land B \\
B \\
\end{array}
\]

are proofs from \(\Gamma\) to \(A\) and from \(\Gamma\) to \(B\), respectively.
For a multiset of formulas Γ and a formula A, we say that A is derivable from Γ in NBCK ($\Gamma \vdash A$, in symbol) if and only if there exists a multiset of formulas Γ' which is a subset (as a multiset) of Γ and a proof \mathcal{D} from Γ' to A. It is easy to see that $\Gamma \vdash A$ if and only if the sequent $\Gamma \rightarrow A$ is provable in the sequent calculus LBCK for BCK (see e.g. [7]).

Next, we will define $\beta\eta$-normal proofs. The followings are the reduction rules for the implication-conjunction fragment.

1. β-reductions

 (a) β-\rightarrow-contraction

 \[
 \begin{array}{c}
 \mathcal{D} \\
 B \\
 A \rightarrow B \\
 \hline \\
 \mathcal{D}' \\
 A \\
 \end{array}
 \]

 \[
 \Rightarrow
 \]

 (b) $\beta\wedge$-contractions

 \[
 \begin{array}{c}
 \mathcal{D}_1 \quad \mathcal{D}_2 \\
 A \quad B \\
 A \wedge B \\
 \hline \\
 \mathcal{D}_1 \\
 A \\
 \end{array}
 \]

 \[
 \Rightarrow
 \]

 \[
 \begin{array}{c}
 \mathcal{D}_1 \quad \mathcal{D}_2 \\
 A \quad B \\
 A \wedge B \\
 \hline \\
 \mathcal{D}_2 \\
 B \\
 \end{array}
 \]

 \[
 \Rightarrow
 \]

2. η-reductions

 (a) η-\rightarrow-contraction

 \[
 \begin{array}{c}
 \mathcal{D} \\
 A \rightarrow B \\
 [A]^{(1)} \\
 \hline \\
 \mathcal{D} \\
 B \\
 \end{array}
 \]

 \[
 \Rightarrow
 \]

 \[
 \begin{array}{c}
 \mathcal{D} \\
 A \rightarrow B \\
 (1) \\
 \hline \\
 \mathcal{D} \\
 A \rightarrow B \\
 \end{array}
 \]

108
(b) η-contraction

$$
\frac{D}{A \land B} \quad \frac{D}{A \land B}
\frac{A}{A} \quad \frac{B}{B}
\frac{A \land B}{A \land B} \quad \Rightarrow
\frac{D}{A \land B}
$$

A proof which is irreducible by any of β-reduction and η-reduction rules is said to be β-normal and η-normal, respectively. A proof which is both β-normal and η-normal is said to be $\beta\eta$-normal. As usual, we can show the strong normalizability and Church-Rosser property for these reduction rules. Moreover reduction rules are closed in NBCK. Therefore, each proof in NBCK has its unique $\beta\eta$-normal form.

Note that any β-normal proof of a minimal formula in the implication-conjunction fragment of BCK is not necessarily $\beta\eta$-normal, while it is in the implicational BCK ([3]). This is shown by following example.

$$
\frac{[P \land Q]^{(1)}}{P} \quad \frac{[P \land Q]^{(1)}}{Q} \quad \frac{[P \land Q]^{(1)}}{P}
\frac{P \land Q}{(P \land Q) \land P}
\frac{(P \land Q) \land P}{(P \land Q) \rightarrow ((P \land Q) \land P)} \quad (1)
$$

Clearly, this is β-normal but is not η-normal. Moreover we can easily check that $(P \land Q) \rightarrow ((P \land Q) \land P)$ is minimal even in the classical logic. Hence it is minimal in BCK.

Now we will give an example of a minimal formula in the implication-conjunction fragment of BCK whose $\beta\eta$-normal proofs are not unique. It is

$$(Q \rightarrow P) \rightarrow (P \rightarrow S) \rightarrow (S \rightarrow P \rightarrow V)$$
$$\rightarrow (P \rightarrow T) \rightarrow (U \rightarrow S) \rightarrow (R \rightarrow P)$$
$$\rightarrow (U \rightarrow T \rightarrow V) \land (R \rightarrow U \rightarrow V) \land (R \rightarrow S).$$

There are two $\beta\eta$-normal proofs of this formula in NBCK. One of the $\beta\eta$-normal proofs for the above formula is as follows:
where D_1 is

\[
\frac{[Q \rightarrow P]^{(8)}}{S \rightarrow P \rightarrow V} \quad \frac{[P \rightarrow S]^{(7)}}{P} \quad \frac{[T \rightarrow P]^{(5)}}{S} \quad \frac{[T]^{(2)}}{P} \\
\frac{S \rightarrow P \rightarrow V}{P \rightarrow V} \quad \frac{V}{Q \rightarrow V} \quad \frac{T \rightarrow Q \rightarrow V}{(1)} \quad \frac{T}{(2)}
\]

D_2 is

\[
\frac{[U \rightarrow S]^{(4)}}{S \rightarrow P \rightarrow V} \quad \frac{[U]^{(1)}}{P \rightarrow V} \quad \frac{[R \rightarrow P]^{(3)}}{V} \quad \frac{[R]^{(2)}}{P} \\
\frac{P \rightarrow V}{U \rightarrow V} \quad \frac{V}{R \rightarrow U \rightarrow V} \quad \frac{U \rightarrow V}{(1)} \quad \frac{R \rightarrow U \rightarrow V}{(2)}
\]

and D_3 is

\[
\frac{[R \rightarrow P]^{(3)}}{P \rightarrow S} \quad \frac{[R]^{(1)}}{S} \quad \frac{[R]^{(1)}}{P} \\
\frac{P \rightarrow S}{S} \quad \frac{P \rightarrow S}{R \rightarrow S} \quad \frac{S}{R \rightarrow S} \quad \frac{(1)}{(1)}
\]

Another proof is obtained by replacing D_1 with

\[
110
\]
It remains to show that the above formula is minimal in BCK. This can be done by detailed (and tedious) examinations of the fact that it cannot be a non-trivial substitution instance of a provable formula in BCK, using the decidability of BCK.

References

School of Information Science
Japan Advanced Institute of Science and Technology, Hokuriku
15 Asahidai Tatsunokuchi
Ishikawa 923-12
Japan
e-mail: aoto@jaist.ac.jp
e-mail: ono@jaist.ac.jp