INTERPOLATION PROPERTIES FOR A CLASS OF MANY-VALUED PROPOSITIONAL CALCULI

In the paper Weaver’s method (see [5]) is adapted to prove interpolation properties of many-valued propositional calculi standard in the sense of Rosser and Turquette. The case of n-valued Łukasiewicz calculi is discussed in connection with the results obtained.

1. Standard n-valued propositional calculi

Where $L = (L, F_1, \ldots, F_k)$ is an absolutely free algebra with the set $V(L)$ of free generators it will be referred to as a propositional language. Elements of $V(L)$ will be called propositional variables while elements of L formulas. For any set $X \subseteq L$, the symbol $V(X)$ is used to denote the set of all propositional variables occurring in formulas of X.

Given a finite natural $n \geq 2$, let $U_n = (\{1, 2, \ldots, n\}, f_1, \ldots, f_k)$ be an algebra similar to L. Then, an n-valued matrix for L is defined as the pair

$(1) \quad M_n = (U_n, I)$

with $I = \{1, 2, \ldots, s\}$ for some $1 \leq s < n$. We shall say that M_n^I is standard, cf. [4], if in U_n one can define two-argument operations \Rightarrow, \lor, \land and one argument operations $\neg, J_1, J_2, \ldots, J_n$ such that

\begin{align*}
i \Rightarrow k & \notin I \quad \text{iff} \quad i \in I \quad \text{and} \quad k \notin I \\
i \lor k & \in I \quad \text{iff} \quad i \in I \quad \text{or} \quad k \in I \\
i \land k & \in I \quad \text{iff} \quad i \in I \quad \text{and} \quad k \in I \\
\neg i & \in I \quad \text{iff} \quad i \notin I \\
J_k(i) & \in I \quad \text{iff} \quad i = k
\end{align*}

for any $i, k \in \{1, 2, \ldots, n\}$. In the sequel the same symbols $\Rightarrow, \lor, \land, \neg, J_1, J_2, \ldots, J_n$ are also used to stand for propositional connectives corresponding to the above operations of standard matrices M_n^I.

Where M_n^I is a standard n-valued matrix for L, we put C_n^I to stand for the consequence operation determined by M_n^I in L in the usual way, i.e. for any $X \subseteq L, \alpha \in L$,

\[(2) \quad \alpha \in C_n^I(X) \text{ iff } \forall \text{ homomorphism (a valuation) } h : L \rightarrow U_n, h(\alpha) \in I \text{ whenever } h(\beta) \in I \forall \beta \in X,
\]

(2) Each pair of the form $S_n^I = (L, C_n^I)$ is what we call an n-valued standard propositional calculus.

Finally, let us recall that the calculi in question have a very important property expressed in the form of deduction theorem with respect to the (standard) implication connective, i.e. that

\[(\text{DED}) \quad \alpha \in C_n^I(X, \beta) \text{ iff } \beta \Rightarrow \alpha \in C_n^I(X),
\]

(DED) cf. [4].

2. Generalized Interpolation Lemma for standard propositional calculi

Throughout this section we shall deal with a given standard propositional calculus $S_n^I = (L, C_n^I)$, and consequently, M_n^I and C_n^I will also be treated as fixed. In turn for any finite set $X_f \subseteq L$, we put $\wedge X_f$ and $\vee X_f$ to stand for the standard conjunction and disjunction of all formulas of X_f taken in arbitrary but fixed order.

Where V is a finite set of propositional variables and h a valuation of L into U_n, let us put

\[(5) \quad R_n(V, h) = \wedge \{J_i(p) : p \in V \text{ and } h(p) = i \}
\]

and

\[K_n^I(\alpha, V) = \vee \{R_n(V, h) : h(\alpha) \in I \}
\]

LEMMA 1. For any finite set $V \subseteq V(L)$ and any $\alpha, \beta \in L$, if $C_n^I(\alpha) \neq L, \beta \in C_n^I(\alpha), V(\alpha) \cap V(\beta) \neq \emptyset$ and $V(\alpha) \cap V(\beta) \subseteq V$, then $\beta \in C_n^I(K_n^I(\alpha, V))$ and $K_n^I(\alpha, V) \in C_n^I(\alpha)$.
PROOF. 1°. If for some \(h : \mathcal{L} \rightarrow \mathcal{U}_n \), \(h(\alpha) \in I \), then immediately from (4) we get \(h(K^I_n(\alpha, V)) \in I \) and therefore \(K^I_n(\alpha, V) \in C^I_n(\alpha) \).

2°. In turn, if for a valuation \(h : \mathcal{L} \rightarrow \mathcal{U}_n \), \(h(K^I_n(\alpha, V)) \in I \), then \(V(\alpha) \cap V(\beta) \subseteq V \) implies that \(h(K^I_n(\alpha, V(\alpha) \cap V(\beta))) \in I \). Consequently, due to (4) there is a valuation \(\overline{h} : \mathcal{L} \rightarrow \mathcal{U}_n \) with the following two properties:

i. \(\overline{h}(\alpha) \in I \)

ii. for every \(p \in V(\alpha) \cap V(\beta) \), \(\overline{h}(p) = h(p) \).

That allows to define a new valuation \(h^* \) as follows:

\[
h^*(p) = \begin{cases} \overline{h}(p) & \text{for } p \in V(\alpha) \\ h(p) & \text{for } p \in V(\beta). \end{cases}
\]

Notice that \(h^*(\alpha) \in I \). But, on the other hand, \(\beta \in C^I_n(\alpha) \). This implies that \(h^*(\beta) \in I \) from which we get \(h(\beta) \in I \), and therefore \(\beta \in C^I_n(K^I_n(\alpha, V)) \).

THEOREM 2 (Generalized Interpolation Lemma). For every finite \(V \subseteq V(\mathcal{L}) \) and for every \(X \subseteq \mathcal{L} \), \(\alpha \in \mathcal{L} \) such that \(V(X) \cap V(\alpha) \neq \emptyset \) and \(V(X) \cap V(\alpha) \subseteq V \)

\((\text{INT})\ \alpha \in C^I_n(X) \iff \text{there is a } \gamma \in \mathcal{L} \text{ with } V(\gamma) = V \text{ such that } \alpha \in C^I_n(\gamma) \text{ and } \gamma \in C^I_n(X)\).

PROOF: The implication from the right to left in (INT) is obtained immediately, cf.[2].

To prove the converse, assume that \(\alpha \in C^I_n(X) \). We discern between the following two cases: 1°. \(C^I_n(X) = L \), 2°. \(C^I_n(X) \neq L \).

1°. If \(C^I_n(X) = L \), then \(\gamma \) is defined as follows:

\[
\gamma = \neg J_1(p) \lor \ldots \lor J_n(p) : p \in V
\]

is a formula we are looking for - \(C^I_n(\gamma) = L \).

2°. Assume that \(C^I_n(X) \neq L \). \(C^I_n \) is determined by a finite matrix and therefore it is finite., cf.[2]. Thus the assumption that \(\alpha \in C^I_n \) implies that there is a finite set of formulas \(X_f \subseteq X \) for which \(\alpha \in C^I_n(X_f) \). In turn, both of the sets \(V(\alpha) \cap V(X) \), \(V(\alpha) \cap V(X_f) \) are finite, and moreover, the former is non-empty. Let us put
\[V^* = (V(X) \cap V(\alpha)) - (V(X_f) \cap V(\alpha)) \]

and define \(X^*_f \) as follows:

\[
X^*_f = \begin{cases}
X_f & \text{whenever } V^* = \emptyset \\
X_f \cup \{ p \Rightarrow p : p \in V^* \} & \text{otherwise.}
\end{cases}
\]

Clearly, \(C^I_n(X_f) = C^I_n(X^*_f) \) and since \(X^*_f \) is finite we can replace it by a single formula built up by the use of the conjunction connective - namely, by \(\beta^* = \bigwedge\{ \beta : \beta \in X^*_f \} \), for we have \(C^I_n(X^*_f) = C^I_n(\beta^*) \). Setting things right, we have \(\alpha \in C^I_n(\beta^*) \) and \(V(\beta^*) \cap V(\alpha) = V(X) \cap V(\alpha) \). Then to conclude the proof is suffices to make use os Lemma 1 and thus to put \(\gamma = K^I_n(\beta^*, V) \).

Corollary 3. If \(V(X) \cap V(\alpha) = \emptyset \) and \(\alpha \in C^I_n(X) \), then either \(C^I_n(X) = L \) or \(\alpha \in C^I_n(\emptyset) \).

Proof: \(S^I_n \) is uniform in the sense od [2] and therefore from [6] we get that for any \(X, Y \subseteq L \) and \(\alpha \in L \)

- If \(V(X) \cap V(\alpha) = V(Y) \cap V(\alpha) = \emptyset \), \(C^I_n(X) \neq L \) and \(\alpha \in C^I_n(X \cup Y) \), then \(\alpha \in C^I_n(Y) \).

Putting \(Y = \emptyset \) in (u) we obtain

- If \(V(X) \cap V(\alpha) = \emptyset \) and \(C^I_n(X) \neq L \) and \(\alpha \in C^I_n(X) \), then \(\alpha \in C^I_n(\emptyset) \)

From which our corollary follows easily.

Now, we are going to establish the \((\Rightarrow)-\)counterpart of Theorem 2.

Theorem 2. For every \(X \subseteq L \), \(\alpha, \beta \in L \) and for every finite subset \(V \subseteq V(L) \), if \(V(X \cup \{ \alpha \}) \cap V(\beta) \neq \emptyset \) and \(V(X \cup \{ \alpha \}) \cap V(\beta) \subseteq V \); then

\[
(\text{INT}_w) \alpha \Rightarrow \beta \in C^I_n(X) \iff \text{there is } \gamma \in L \text{ with } V(\gamma) = V \text{ such that } \alpha \Rightarrow \gamma \in C^I_n(X) \text{ and } \gamma \Rightarrow \beta \in C^I_n(\emptyset).
\]

Proof: Suppose that under the assumption of the theorem \(\alpha \Rightarrow \beta \in C^I_n(X) \). Then, using (DED) we get \(\beta \in C^I_n(X, \alpha) \) and therefore, by Theorem 2, there exists a formula \(\gamma \) such that \(V(\gamma) = V, \beta \in C^I_n(\gamma) \) and \(\gamma \in C^I_n(X, \alpha) \). Using again (DED) we obtain \(\alpha \Rightarrow \gamma \in C^I_n(X), \gamma \Rightarrow \beta \in C^I_n(\emptyset) \) which ends the proof of the "only if" part. An easy proof of the "if" part is omitted.
Corollary 5. If \(V(X \cup \{\alpha\}) \cap V(\beta) = \emptyset \) and \(\alpha \Rightarrow \beta \in C_n(X) \), then either \(C_n(X, \alpha) = L \) or \(\alpha \Rightarrow \beta \in C_n(\emptyset) \).

3. Interpolation within Łukasiewicz \(n \)-valued propositional calculi

P.S. Krzystek and S. Zachorowicz proved in [1] that \(n \)-valued Łukasiewicz calculi for \(n \geq 3 \) fail to have interpolation property with respect to the original implication connective \(\rightarrow \). On the other hand, each matrix \(M_n \) (including the case \(n = 2 \)) is standard, cf.[3], [4]. Consequently, all the results of the preceding section apply to the consequence operation \(C_n \) determined by \(M_n \)'s. In particular, \(C_n \) has the interpolation with respect to a propositional connective corresponding to the binary operation of \(M_n \) defined as follows:

\[
x \Rightarrow y = \begin{cases}
1 & \text{whenever } x \neq 1 \\
y & \text{otherwise.}
\end{cases}
\]

cf.[4].

Observe also that \(\Rightarrow \) can be defined by the sole use of \(\rightarrow \):

\[
x \Rightarrow y = x \rightarrow_{n-1} y,
\]

\((x \rightarrow_{n-1} y \) is a shorthand for \(x \rightarrow (x \rightarrow \ldots \rightarrow (x \rightarrow y) \ldots) \) if \(n > 1 \) and \(y \) otherwise). Then the following assertion is an easy corollary to Theorem 4:

Assertion 6. For every finite \(V \subseteq V(L) \), every \(X \subseteq L \), \(\alpha, \beta \in L \), if \(V(X \cup \{\alpha\}) \cap V(\beta) \neq \emptyset \), \(V(X \cup \{\alpha\}) \cap V(\beta) \subseteq V \) and \(\alpha \rightarrow \beta \in C_n(X) \), then there is a \(\gamma \in L \) such that \(V(\gamma) = V \), \(\alpha \rightarrow_{n-1} \gamma \in C_n(X) \) and \(\gamma \rightarrow_{n-1} \beta \in C_n(\emptyset) \).

Clearly, we also get

Corollary 7. If \(V(X \cup \{\alpha\}) \cap V(\beta) = \emptyset \) and \(\alpha \in C_n(X) \), then either \(C_n(X, \alpha) = L \) or \(\beta \in C_n(\emptyset) \).
References

Institute of Philosophy
Lódz University

Institute of Philosophy and Sociology
Polish Academy of Science
Warszawa