ON FINITELY BASED CONSEQUENCE DETERMINED
BY A DISTRIBUTIVE LATTICE

Let \(F = \langle F, \land, \lor \rangle \) be a free algebra in the class of all algebras of type \(\langle 2, 2 \rangle \) freely generated by the set of variables \(V = \{ p_0, p_1, p_2, \ldots \} = \{ p_i : i \in \mathbb{N} \} \). The elements of the set \(F \) will be called formulas. We shall use the Latin lower case letters \(x, y, z \) for formulas and \(U, X, Y \) for sets of formulas. The symbol \(V(U) \) denotes the set of all variables occurring in formulas of \(U \). By \(R \) we denote the set of the following rules:

\[
\begin{align*}
R1. & \quad \frac{x \land y}{x}, & R7. & \quad \frac{x \lor (y \lor z)}{(x \lor y) \lor z} \\
R2. & \quad \frac{x \land y}{y \land x}, & R8. & \quad \frac{(x \lor y) \lor z}{x \lor (y \lor z)} \\
R3. & \quad \frac{x, y}{x \land y}, & R9. & \quad \frac{x \lor (y \land z)}{(x \lor y) \land (x \lor z)} \\
R4. & \quad \frac{x}{x \lor y}, & R10. & \quad \frac{(x \lor y) \land (x \lor z)}{x \lor (y \land z)} \\
R5. & \quad \frac{x \lor y}{y \lor x}, & R11. & \quad \frac{x \lor (y \lor z)}{(x \lor y) \lor (x \lor z)} \\
R6. & \quad \frac{x \lor (x \lor y)}{x \lor y}. & R12. & \quad \frac{x \lor x}{x}.
\end{align*}
\]

The set of rules \(R \) determines a consequence operation \(\text{Cn}_R : 2^F \to 2^F \) such that for every \(X \subseteq F \), \(\text{Cn}_R(X) \) is the smallest subset of \(F \) containing \(X \) and closed under the rules of \(R \).
Define the relation $\vdash_R \subseteq F \times F$ as follows:

$$x \vdash_R y \iff y \in Cn_R(\{x\})$$

for every $x, y \in F$.

Then we obtain the following

Lemma 0. For every $x, y, z \in F$:

(i) $(x \land y) \lor x \vdash_R x$,
(ii) $(x \land y) \lor z \vdash_R y \lor z$,
(iii) $(x \land y) \lor (x \land z) \vdash_R x \land (y \lor z)$.

Proof. (i)

(1) $(x \land y) \lor x \vdash_R x \lor (x \land y)$ \{R5\}
(2) $x \lor (x \land y) \vdash_R (x \lor x) \land (x \lor y)$ \{R9\}
(3) $(x \lor x) \land (x \lor y) \vdash_R x \lor x$ \{R1\}
(4) $x \lor x \vdash_R x$ \{R12\}.

As analogous to (i), the proofs of (ii) and (iii) are left out.

Let $K = \langle K, \cap, \cup \rangle$ be a distributive lattice with 0 and 1 such that $0 \neq 1$, and let $K = \langle K, \{1\} \rangle$. The class of all such matrices K will be denoted by V. Every matrix $K \in V$ determines a consequence operation C_K as follows:

$$x \in C_K(X) \iff \forall h \in Hom(F, K)[h(X) \subseteq \{1\} \Rightarrow h(x) = 1]$$

for every $x \in F$ and $X \subseteq F$, (cf. [1]).

In this paper we show that $Cn_R = C_K$, for every $K \in V$.

The following lemma holds.

Lemma 1. $Cn_R \leq C_K$, for every $K \in V$.

We omit an easy proof of this lemma.

Let AE be a smallest set satisfying the following conditions:

a. $V \subseteq AE$
b. $x, y \in AE \Rightarrow x \lor y \in AE$.

Now, we define the function $d : F \to 2^F$ as follows:

a. $d(x) = \{x\}$, if $x \in V$,
b. $d(x \land y) = \{x \land y\}$,
c. $d(x \lor y) = d(x) \cup d(y)$,

for every $x, y \in F$.
Then we obtain

Lemma 2. For any \(x \in F - AE \) there exist \(y, z \in F \) such that \(y \land z \in d(x) \).

The proof of this lemma is straightforward.

Now let \(s \) be the function \(s : F \to N \) defined as follows:

1. \(s(x) = 0 \), if \(x \in V \),
2. \(s(x \land y) = s(x \lor y) = s(x) + s(y) + 1 \),

for every \(x, y \in F \).

Then the following holds.

Lemma 3. If \(d(x) = \{ z_1, z_2, \ldots, z_n \} \) and \(n \geq 2 \), then for every permutation \(i_1, i_2, \ldots, i_n \) of the sequence \(1, 2, \ldots, n \) we have:

1. \(C_{nR}(\{ x \}) = C_{nR}(\{ z_{i_1} \lor (z_{i_2} \lor \ldots \lor (z_{i_{n-1}} \lor z_{i_n}) \ldots) \}) \),
2. \(V(\{ x \}) = V(\{ z_{i_1} \lor (z_{i_2} \lor \ldots \lor (z_{i_{n-1}} \lor z_{i_n}) \ldots) \}) \),
3. \(s(z_{i_1} \lor (z_{i_2} \lor \ldots \lor (z_{i_{n-1}} \lor z_{i_n}) \ldots)) \leq s(x) \).

Proof. (i) The lemma 3(i) is obtained by applying the rules \(R_4, R_5, R_7, R_8 \) and \(R_5 - R_8 \).

Easy proofs of (ii) and (iii) can be omitted.

Lemma 4. For every \(x \in F \) there exists a finite set \(U \subseteq AE \) such that:

1. \(C_{nR}(\{ x \}) = C_{nR}(U) \),
2. \(V(\{ x \}) = V(U) \).

Proof. If \(x \in V \), then the lemma is obvious. Assume inductively that for every formula \(w \) such that \(s(w) < s(x) \) the considered lemma holds. Let \(x = y_1 \lor z_1 \). If \(x \in AE \), then the lemma holds, for \(U = \{ x \} \). Let \(x \in F - AE \). Hence, by Lemma 2 and Lemma 3, for some \(y, z, x_1 \in F \) we have:

1. \(y \land z \in d(x) \),
2. \(C_{nR}(\{ x \}) = C_{nR}(\{ y \land z \} \lor x_1) \),
3. \(V(\{ x \}) = V(\{ y \land z \} \lor x_1) \),
4. \(s(y \land z) \lor x_1 \leq s(x) \).

From (2) and (4), applying the rules: \(R_9, R_{10}, R_{11}, R_1, R_2, R_3, R_5, \) and Lemma 0(iii), we obtain:
(5) \(Cn_R(\{x\}) = Cn_R(\{y \vee x_1, z \vee x_1\}) \),
(6) \(s(y \vee x_1) < s(x) \) and \(s(z \vee x_1) < s(x) \).

From (6) and from the inductive hypothesis, applying (5) we have:

(7) \(Cn_R(\{x\}) = Cn_R(U_1 \cup U_2) \),
(8) \(V(\{x\}) = V(U_1 \cup U_2) \),

for some finite subsets \(U_1, U_2 \) of \(AE \).

Thus the proof for \(x = y_1 \vee z_1 \) is completed. For \(x = y \land z \) it is quite simple.

Lemma 5. If \(x \in AE, U \subseteq AE \) and \(x \notin Cn_R(U) \), then there exists a set \(Y \subseteq V \) such that:

(i) \(x \notin Cn_R(Y) \),
(ii) \(U \subseteq Cn_R(Y) \).

Proof. Let \(x \in AE, U \subseteq AE \) and

(1) \(x \notin Cn_R(U) \).

Put

(2) \(V_z = V(\{z\}) - V(\{x\}) \), for every \(z \in U \).

Then, by (1), we have

(3) \(V_z \neq \emptyset \), for every \(z \in U \).

Hence, for \(Y = \{p_z : z \in U\} \), where \(p_z \) is some natural number such that \(p_z \in V_z \), we obtain:

(4) \(x \notin Cn_R(Y) \) and \(U \subseteq Cn_R(Y) \).

This completes the proof of Lemma 5.

Now, let \(K_2 = \langle \{0, 1\}, \cap, \cup \rangle \) and \(K_2 = \langle K_2, \{1\} \rangle, 0 \neq 1 \). We shall prove the following

Theorem. \(Cn_{K_2} \leq Cn_R \).

Proof. Let \(X \subseteq F \) and

(1) \(z \notin Cn_R(X) \).

According to Lemma 4, for some finite set \(U \subseteq AE \) we have:

(2) \(Cn_R(\{z\}) = Cn_R(U) \).
(3) $V(\{z\}) = V(U)$.

Hence for some $x_1 \in U$

(4) $x_1 \notin Cn_R(X)$.

By Lemma 4 we also have

(5) $Cn_R(X) = Cn_R(U_1)$, for some $U_1 \subseteq AE$.

From (4), (5) and Lemma 5

(6) $x_1 \notin Cn_R(Y_1)$ and
(7) $X \subseteq Cn_R(Y_1)$,

for some $Y_1 \subseteq V$.

Now, we define the function $v : V \to \{0, 1\}$ as follows:

(8) $v(p_i) = \begin{cases} 1, & \text{if } p_i \in Y_1 \\ 0, & \text{if } p_i \in V - Y_1. \end{cases}$

By Lemma 1 and by the fact that $R3, R4, R5 \in R$ we have

(9) $y \in Cn_R(Y_1) \iff h^v(y) = 1$, for every $y \in F$,

where h^v is the extension of the function v to the homomorphism of the algebra E to K_2.

According to (2), (4) and (6) we obtain

(10) $z \notin Cn_R(Y_1)$.

Hence, by (9) and (7): $h^v(X) \subseteq \{1\}$ and $h^v(z) = 0$, which completes the proof of the theorem.

¿From Lemma 1 and from Theorem we have

COROLLARY. $Cn_R = C_\mathcal{K}$, for every $\mathcal{K} \in \mathcal{V}$.

References

Institute of Mathematics
Pedagogical College
Kielce