ON UNIVERSAL ALGEBRAIC LOGIC AND CYLINDRIC ALGEBRAS

This is an abstract of the dissertation [1] which solved some problems raised in [2]. The subject is General Algebraic Logic in the sense of Rasiowa [5], but now for first order logics. Here we discuss the algebraic problems; their connections with (nonclassical and classical) logics were explained in [2]. The variety of cylindric algebras [4] was introduced for the classical first order logic; the present general algebraic (universal algebraic) approach is a generalization of the theory of that variety [4] to make it applicable to other first order logics as well (cf. Freeman [6]).

Throughout, α, β, γ denote infinite ordinals, ω is the set of natural numbers, and Ord is the class of finite ordinals.

Definition 1.1:

1. By a *type-scheme* we understand a quadruple $t = (T, \delta, \tau, c)$ where T is a set, $\delta : T \to \omega$, $\tau : T \to \omega$, $c \in T$ and $\delta(c) = \tau(c) = 1$.

2. A type-scheme t defines a *similarity type* t_α for each infinite ordinal α as follows:

 $t_\alpha : \Omega_\alpha \to \omega$, where the set Ω_α of operation symbols is:

 $\Omega_\alpha = d \{ f_{i_1, \ldots, i_n} : f \in T, i_1, \ldots, i_n \in \alpha, n = \delta(f) \}$ with arities:

 $t_\alpha(f_{i_1, \ldots, i_n}) = d \tau(f)$.

 (Here f_{i_1, \ldots, i_n} stands for the $n + 1$-tuple (f, i_1, \ldots, i_n).)

Example ([4]): The similarity type of α-dimensional cylindric algebras is:

$t_\alpha = \{ (\cdot, 2), (-, 1), (c_i, 1), (d_{ij}, 0) : i, j \in \alpha \}$.

The “cylindric type-scheme” consists of $T = \{ -, c, d \}$ and $\delta(\cdot) = \delta(\cdot) = 0$, $\delta(c) = 1$, $\delta(d) = 2$; $\tau(c) = 2$ etc.

The universe of an algebra A is denoted by A.
Definition 1.3. ([4], D. 2.6.1): Let t be a type-scheme, A an algebra of type t_α, and let $\xi : \beta \rightarrow \alpha$ be arbitrary. Now, $Rd^\xi A$ is a new algebra of type t_β obtained from A as follows:

The universe of $Rd^\xi A$ is A.

The interpretation of the operation symbol $f_{i_1\ldots i_n} \in \Omega_\alpha$ in the new algebra coincides with the interpretation of $f_{\xi(i_1)\ldots \xi(i_n)}$ in the old one, i.e. $f_{\xi(i_1)\ldots \xi(i_n)}^{Rd^\xi A} =^d f_{i_1\ldots i_n}^A$.

$Rd^\xi A$ is called a generalized reduct of A along ξ.

If K is a class of algebras of similarity type t_α, then $Rd^\xi K = \{Rd^\xi A : A \in K\}$.

An element $b \in A$ of an algebra A of type t_α is said to be sensitive to the index $i \in \alpha$ if b is not a fixed point of the operation c_A^i (i.e. $c_A^i(b) \neq b$).

Definition 1.5 ([4], D. 1.11.1.): An algebra is locally finite dimensional if each of its elements is sensitive to finitely many indices only, i.e. if $(\forall a \in A)((\{i \in \alpha : c_A^i(a) \neq a\} \text{ is finite})$. An algebra is dimension complemented if to any finite subset B of its universe there are infinitely many indices to which no element of B is sensitive.

Definition 1.6 ([4], D. 2.6.28): Let $\alpha \leq \beta$ (i.e. $t_\alpha \subseteq t_\beta$). Let B be an algebra of type t_β, and let B' be its reduct of type t_α (i.e. we omit the operations which have indices greater than α). An algebra $A \subseteq B'$ is said to be a neat subreduct of B if the elements of A are not sensitive in B to the indices greater than α, i.e. if $(\forall a \in A)(\forall i \geq \alpha)c_B^i(a) = a$.

If K is a class of algebras of similarity type t_β, then $SNr_{t_\alpha}K$ denotes the class of those neat subreducts of elements of K, which are of type t_α.

Definition 3.2: By a system of varieties of type-scheme t we mean a sequence $\langle V_\alpha \rangle_{\alpha \in \text{Ord}}$, for which the following 1.-3. hold:

1. V_α is a variety of type t_α, for every $\alpha \in \text{Ord}$.
2. $Rd^\xi V_\alpha \subseteq V_\gamma$ for every inclusion $\xi : \gamma \rightarrow \alpha$.
3. For every pair of ordinals $\gamma \leq \alpha$ and algebra A of type t_α:
 If every generalized reduct of type t_γ of A is in V_γ, then the original algebra A is in V_α, too (i.e. $[(\forall \xi : \gamma \rightarrow \alpha)Rd^\xi A \in V_\gamma] \Rightarrow A \in V_\alpha$.
Notation: From now on $\langle V_\alpha \rangle_{\alpha \in \text{Ord}}$ stands for an arbitrary system of varieties belonging to some type-scheme t, and

$Vf_\alpha =_d \{ A \in V_\alpha : A$ is locally finite dimensional $\}$

$Vc_\alpha =_d \{ A \in V_\alpha : A$ is dimension complemented $\}$

$Vn_\gamma \alpha =_d SNr_\gamma V_\alpha$.

Theorem 3.7: ω is the least ordinal ρ for which it is true that for every system of varieties and ordinal α, the sequence $\langle Vn_\omega \alpha + \rho + \nu \rangle_{\nu \in \text{Ord} \cup \omega}$ is constant, i.e. $Vn_\omega \alpha + \rho = Vn_\omega \alpha + \rho + \nu$ for every ordinal ν.

Notation: $Vn_\alpha =_d Vn_\omega \alpha$.

Notations: The letters H, S, P, Pr, Up, Sd denote the operators of taking homomorphic images, subalgebras, direct product, reduced products, ultraproducts and sandwich-subalgebras (see [3]), respectively. That is, if K is a class of algebras, then HK denotes the class of all homomorphic images of elements of K, etc.

Remark: The operators $SdUp$, SuP, Spr, HP are known to coincide with the formation of hulls axiomatizable by \exists_2-formulas ($\forall \exists$-formulas), by universal formulas, by universal Horn-formulas (quasi-identities), and by identities, respectively.

Theorem 3.14-3.18: (For any $\langle V_\beta \rangle_{\beta \in \text{Ord}}$ and any α):

1. $Vf_\alpha \subseteq Vc_\alpha \subseteq Vn_\alpha = SP^r Vn_\alpha \subseteq V_\alpha$.

2. If $|\alpha| = \omega$, then
 $\text{SdUp} Vf_\alpha = \text{SdUp} Vc_\alpha$
 $SU PVf_\alpha = SU PVc_\alpha = SP^r Vf_\alpha = SP^r Vc_\alpha$
 $HSPVf_\alpha = HSPVc_\alpha$
 and only these equalities are valid, i.e. there is a system of varieties $\langle V_\beta \rangle_{\beta \in \text{Ord}}$ such that the classes $Vf_\alpha, Vc_\alpha, SPVf_\alpha, SPVc_\alpha, SdUpVf_\alpha, SU PVf_\alpha, HSPVf_\alpha, Vn_\alpha, HVn_\alpha, V_\alpha$, are all different from one another (for any countable α).

3. If $\alpha \geq \omega^+$, then no equality is valid except
 $SU PVf_\alpha = SP^r Vf_\alpha$.
 There is a system of varieties $\langle V_\beta \rangle_{\beta \in \text{Ord}}$ for which the classes $Vf_\alpha, Vc_\alpha, SPVf_\alpha, SPVc_\alpha, SdUpVf_\alpha, SdUpVc_\alpha, SU PVf_\alpha, SU PVc_\alpha, HSPVf_\alpha, HSPVc_\alpha, Vn_\alpha, HVn_\alpha, V_\alpha$
 are all different from one another, i.e., for instance $HSPVf_\alpha \neq$
DEFINITION 4.1: A system of varieties \(\langle V_\alpha \rangle_{\alpha \in \text{Ord}} \) satisfies the “generating condition”, if in every algebra of \(V_\omega \), elements sensitive only to finitely many indices generate no element sensitive to all indices \((i \in \omega) \). More precisely:

\[
(\forall A \in V_\omega)(\forall m \in \Omega_\omega) \left[\text{if } a_1, \ldots, a_n \in A \text{ are sensitive only to finitely many indices, then } (\exists i \in \omega)c_i(m(a_1, \ldots, a_n)) = m(a_1, \ldots, a_n) \text{ in } A \right].
\]

THEOREM 4.5: Let the system of varieties \(\langle V_\alpha \rangle_{\alpha \in \text{Ord}} \) satisfy the generating condition. Now, for every \(\alpha \in \text{Ord} \):

\[
\begin{align*}
\text{SdUp}Vf_\alpha &= \text{SdUp}Vc_\alpha \\
\text{SUp}Vf_\alpha &= \text{SUp}Vc_\alpha = \text{Sp}^rVf_\alpha = \text{Sp}^rVc_\alpha = Vn_\alpha \\
HSPVf_\alpha &= HSPVc_\alpha = HVn_\alpha,
\end{align*}
\]

and only these equalities are valid, i.e., there is a system of varieties \(\langle V_\alpha \rangle_{\alpha \in \text{Ord}} \) satisfying the generating condition, such that the classes \(Vf_\alpha, Vc_\alpha, SPVf_\alpha, SPVc_\alpha, \text{SdUp}Vf_\alpha, \text{SUp}Vf_\alpha, HSPVf_\alpha, V_\alpha \) are all different.

REMARK: The cylindric algebras of [4] form a systems of varieties \(\langle CA_\alpha \rangle_{\alpha \in \text{Ord}} \) satisfying the generating condition; therefore Th. 4.5. applies. Surprisingly, the inequalities of Th. 4.5. also hold for them with the exception that \(HVn_\alpha = Vn_\alpha \) is true for cylindric algebras. The following problem is open also for cylindric algebras.

PROBLEM: 1. Find a system of varieties \(\langle V_\alpha \rangle_{\alpha \in \text{Ord}} \) and a \(\Sigma_2 \)-formula \(\varphi \) (i.e. \(\varphi \equiv \exists \forall \exists \eta(\exists \eta) \)) such that \(Vf_\alpha \models \varphi \) and \(Vc_\alpha \not\models \varphi \) for some countable \(\alpha \). (By Th. 3.14. \(Vf_\alpha \) and \(Vc_\alpha \) are equivalent w.r.t. \(\Pi_2 \)-formulas.)

2. Find \(\langle V_\alpha \rangle_{\alpha \in \text{Ord}} \) and a first order \(\varphi \) such that \(Vf_\alpha \models \varphi \) and \(Vc_\alpha \not\models \varphi \) for some countable \(\alpha \). What is the smallest prenex for \(\varphi \) (\(\Sigma_2, \Pi_3, \Sigma_3, \ldots \)).

3. Solve the above problems for varieties satisfying the generating condition (and for arbitrary \(\alpha \)).

References

Mathematical Institute of the Hungarian Academy of Sciences
Budapest