THE NUMBER OF QUASIVARIETIES OF DISTRIBUTIVE LATTICES WITH PSEUDOCOMPLEMENTATION

This is an abstract of the submitted to Report on Mathematical Logic.

Following Grätzer [2] by a distributive lattice with pseudocomplementation we mean an algebra $A = \langle A, \land, \lor, \neg, 0_A, 1_A \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ such that $\langle A, \land, \lor, 0_A, 1_A \rangle$ is a bounded distributive lattice and for every $a \in A$, $\neg a$ is the pseudocomplement of a (i.e. the greatest element of the set $\{ x : x \in A, x \land a = 0 \}$). Let D be the class of distributive lattices with pseudocomplementation. It is known that D is a variety (see [5]) and a nice characterization of the lattice of subvarieties of D is to be found in [3] (it is a denumerable lattice dually isomorphic to the ordinal $\omega^+\cdot\omega$). In this paper we will prove that the family of all subsets of a denumerably infinite set ordered by the inclusion is isomorphic to a family of quasivarieties of distributive lattices with pseudocomplementation. This result is a solution of the problem 63 of Grätzer [2] because it yields that the number of quasivarieties of distributive lattices with pseudocomplementation is 2^{\aleph_0}.

Let $T = \langle T, \land, \lor, \neg, 0, 1 \rangle$ be the free algebra of terms of type $\langle 2, 2, 1, 0, 0 \rangle$ free-generated by a denumerably infinite set of variables $V = \{ z_0, z_1, \ldots \}$. By an identity we mean an expression of the form $\alpha \equiv \beta$ where α and β are terms of T. The symbol Id denotes the set of all identities. By an implication we mean an expression of the form $X \rightarrow \alpha \equiv \beta$ where $\alpha \equiv \beta$ is an identity and X is a finite (possibly empty) set of identities.

Given an algebra $A \in D$, a valuation in A is an arbitrary homomorphism v of the algebra T into A. An identity $\alpha \equiv \beta$ is satisfied by the valuation v iff $v(\alpha) = v(\beta)$. The symbol $\text{Id}(v)$ denotes the set of all identities that are satisfied by v and $\text{Id}(A) = \bigcap \{ \text{Id}(v) : v \text{ is a valuation in } A \}$. An implication $X \rightarrow \alpha \equiv \beta$ is satisfied by the valuation v iff $X \subseteq \text{Id}(v)$.
implies that $\alpha \equiv \beta \in Id(v)$. The symbol $Im(v)$ denotes the set of all implications that are satisfied by v and $Im(A) = \bigcap(Im(v) : v$ is a valuation in A).

A class K of algebras of the same type is a variety iff for some set of identities X, $K = \{A : X \subseteq Id(A)\}$. The class K is a quasivariety iff for some set of implications Y, $K = \{A : Y \subseteq Im(A)\}$. A characterization of quasivarieties of algebras was given by Malcev [4]. It should be noted that a quasivariety is closed under the formation of subalgebras and direct products (see [4]).

A convenient method of constructing distributive lattices with pseudo-complementation satisfying a prescribed set of implications can be obtained by transferring to lattice theory the following technique of forcing which is very familiar in logic.

Let $A = \langle A, \leq \rangle$ be a partially ordered set. A binary relation $\vdash \subseteq A \times T$ is called a forcing on A iff for every $a, b \in A$, $\alpha, \beta \in T$ the following conditions hold (see [6]):

(i) For every $z \in V$, if $a \vdash z$ and $a \leq b$ then $b \vdash z$;
(ii) $a \vdash 1$;
(iii) $a \vdash 0$ (\neg denotes the complement of \vdash);
(iv) $a \vdash \alpha \land \beta$ iff $a \vdash \alpha$ and $a \vdash \beta$;
(v) $a \vdash \alpha \lor \beta$ iff $a \vdash \alpha$ or $a \vdash \beta$;
(vi) $a \vdash \neg \beta$ iff for every $b \geq a$, $b \not\vdash \beta$.

Lemma 1. (see [6]).

(i) Every relation $\vdash \subseteq A \times V$ satisfying the condition (i) of the above definition can be extended (uniquely) to a forcing relation \vdash on A.

(ii) For every forcing \vdash on A, $a, b \in A$ and $\alpha, \beta \in T$ if $a \vdash \alpha$ and $a \leq b$ then $b \vdash \alpha$.

We say that an identity $\alpha \equiv \beta$ is satisfied by a forcing \vdash on A iff for every $a \in A$, $a \vdash \alpha$ iff $a \vdash \beta$. The symbol $Id(\vdash)$ denotes the set of all identities that are satisfied by \vdash and $Id(A) = \bigcap(Id(\vdash) ; \vdash$ is a forcing on A). An implication $X \rightarrow \alpha \equiv \beta$ is satisfied by \vdash iff $X \subseteq Id(\vdash)$ implies that $\alpha \equiv \beta \in Id(\vdash)$. The symbol $Im(\vdash)$ denotes the set of all implications that are satisfied by \vdash and $Im(A) = \bigcap(Im(\vdash) ; \vdash$ is a forcing on A).

Following Birkhoff [1] we say that a partially ordered set is inductive iff every chain of its elements has an upper bound.
Lemma 2. If \(A = \langle A, \leq \rangle \) is inductive, \(a \in A \) and \(\alpha \in T \) then for every forcing relation \(\Vdash \) on \(A \) the following conditions are equivalent:

(i) \(a \Vdash \neg \alpha \),

(ii) for every maximal element \(b \in A \) such that \(a \leq b \), \(b \not\Vdash \alpha \).

For every partially ordered set \(A = \langle A, \leq \rangle \) let \(\Gamma(A) \) be the distributive lattice with pseudocomplementation of all hereditary subsets of \(A \) (see [2]). Recall that \(B \subseteq A \) is hereditary iff for every \(b \in B \), if \(a \in A \) and \(b \leq a \) then \(a \in B \). If \(H(A) \) is the family of all hereditary subsets of \(A \) then \(\Gamma(A) = \langle H(A), \cap, \cup, \neg, \emptyset, A \rangle \) where for every \(\Phi \in H(A) \), \(\neg \Phi = \bigcup(\Psi : \Psi \in H(A), \Psi \cap \Phi = \emptyset) \).

Lemma 3. \(\text{Im}(A) = \text{Im}(\Gamma(A)) \).

Let \(N \) be the set of all natural numbers. It will be convenient to identify a natural number \(n \) with the set of all natural numbers that are smaller than \(n \). For every \(n \subseteq N - \{0, 1\} \) we define the corresponding implication \(\Pi_n \) putting:

\[
\Pi_n = \neg
\bigvee (\neg z_i : i \in n) \equiv \bigvee (\neg z_i : i \in n) \Rightarrow 1 \equiv \bigvee (\neg (z_i \land \bigwedge (\neg z_j : j \in n - \{i\})) : i \in n).
\]

To explain what the implication \(\Pi_n \) says we need the following definitions. An element \(a \) of an algebra \(A \in \mathbb{D} \) is called skeletal (see [2]) iff for some \(b \in A \), \(a = \neg b \). A finite set \(B \) of elements of an algebra \(A \in \mathbb{D} \) is meet-independent iff for every \(C \subsetneq B \), \(\bigwedge C \neq \bigwedge B \). Now we can state the following:

Theorem 1. If \(A \in \mathbb{D} \) is such that the set of all non-unit skeletal elements of \(A \) can be extended to a proper ideal then the following conditions are equivalent:

(i) \(\Pi_n \in \text{Im}(A) \),

(ii) there is no meet-independent \(n \)-element set of skeletal elements of \(A \) whose join also is skeletal.

For every \(n \in N \) let \(P_n \) be the family of all \(n \)-element subsets of \(N \). For every \(I \subset N - \{0, 1\} \) let \(S_I = \bigcup(P_n : n \in I \cup \{1\}) \cup \{N\} \). Thus, for every \(I \subseteq N - \{0, 1\} \) we have the corresponding partially ordered set \(S_I = \langle S_I, \supseteq \rangle \).
It is obvious that all the maximal elements of S_I are singletons from P_1, the smallest element of S_I is N and every ascending chain of elements of S_I is finite which immediately yields that S_I must be inductive.

Lemma 4. For every $I \subseteq N - \{0, 1\}$ and $n \in N - \{0, 1\}$ the following conditions are equivalent:

(i) $\Pi_n \in Im(S_I)$,

(ii) $n \in I$.

For every $I \subseteq N - \{0, 1\}$ we define a set of implications $\Pi(I) = \{\Pi_n : n \in I\}$ and the corresponding quasivariety $K(I) = \{A : A \in \mathcal{D}, \Pi(I) \subseteq Im(A)\}$. Applying Lemma 3 and Lemma 4 we get main result of this paper:

Theorem 2. For every $I, J \subseteq N - \{0, 1\}$, $K(I) \subseteq K(J)$ iff $I \supseteq J$.

Proof. Immediate, by Lemma 3 and Lemma 4. Q.E.D.

Corollary. There exist 2^{\aleph_0} of quasivarieties of distributive lattices with pseudocomplementation.

References

Department of Logic
Jagiellonian University
Cracow