DEFINABILITY CRITERION FOR FUNCTIONS IN SUGIHARA ALGEBRAS

This is an abstract of the second part of a paper that will be published in *Studia Logica*.

Let \(A = (A, \sim, \lor, \land, \rightarrow) \) be a Sugihara algebra (see [1]). For \(a \in A \), we shall write \(a = 0 \) instead of \(\sim a = a \).

Definition 1. Two sequences \(a = (a_1, \ldots, a_k) \), \(b = (b_1, \ldots, b_k) \) of elements of \(A \) are said to be EXTREMALLY SIMILAR, in symbols \(a \simeq b \), provided that for all \(i, j \), \(1 \leq i, j \leq k \),

\[
\begin{align*}
(i) & \quad a_i = 0 \text{ iff } b_i = 0; \quad a_i < 0 \text{ iff } b_i < 0, \\
(ii) & \quad |a_i| \leq |a_j| \text{ iff } |b_i| \leq |b_j|.
\end{align*}
\]

Let \(f \) be a variable ranging over \(k \)-ary functions on \(A \), that is \(f : A^k \to A \).

Definition 2. A function \(f \) is said to PRESERVE SIMILARITY provided that for every \(a, b \in A^k \), if \(a \simeq b \) then for all \(i \), \(1 \leq i \leq k \),

\[
\begin{align*}
(i) & \quad f(a) = a(i) \text{ iff } f(b) = b(i) \\
(ii) & \quad f(a) = \sim a(i) \text{ iff } f(b) = \sim b(i).
\end{align*}
\]

Theorem. A function \(f \) is definable (see [1]) in \(A \) if and only if

\[
\begin{align*}
(i) & \quad \text{for every } a = A^k, f(a) \in \{a(1), \ldots, a(k), \sim a(1), \ldots, \sim a(k)\}, \\
(ii) & \quad f \text{ preserves similarity.}
\end{align*}
\]
References