MATRZĘ LUKASIEWICZA ALGEBRAS

This paper was presented at the seminar of the Department of Logic, Jagiellonian University in Cracow, held by Professor Stanislaw J. Surma. A more developed version of this paper will appear in Reports on Mathematical Logic.

In 1940 Gr. C. Moisil introduced (see [1]) the notion of n-valued Lukasiewicz algebra. Intuitions connected with those algebras are explained by the representation theorem (comp. [2]) which, roughly speaking, states that one can treat elements of n-valued Lukasiewicz algebra as increasing n-tuples of elements of a Boolean algebra.

Starting with this observation the author tried to generalize the notion of n-valued algebra of Lukasiewicz in such a way that elements of this generalized algebra could be represented by ‘increasing’ matrices of elements of a suitable Boolean algebra.

We begin by introducing some useful symbols

01. $(n \times m) = \{1, \ldots, n - 1\} \times \{1, \ldots, m - 1\}$

02. $C(L) = \{x \in L : \exists y \in L : x \cup y = 1, x \cap y = 0\}$

03. $C(L)^{(n \times m)} = \{f : (n \times m) \to C(L) : \text{For arbitrary } i, j, r < s \implies f(r, j) \subset f(s, j) \text{ and } f(i, r) \subset f(i, s)\}$

Definition 1. Algebra $\langle L, \{\sigma_{ij}\}_{(i,j)(n\times m)} \rangle$ will be called $n \times m$-valued matrix Lukasiewicz algebra if

I L is a distributive lattice with the smallest and the greatest elements denoted by 0 and 1 respectively.

II $\{\sigma_{ij}\}$ is a family of mutually different endomorphisms of lattice L fulfilling the following conditions:
\begin{align*}
S1 \quad \sigma_{ij} : L \to C(L) \\
S2 \quad \sigma_{ij}x \subset \sigma_{ij+1}x \\
S3 \quad \sigma_{ij}x \subset \sigma_{ij+1}x \\
S4 \quad \sigma_{ij}(\sigma_{rs}x) = \sigma_{rs}x \\
S5 \quad \sigma_{ij}0 = 0, \quad \sigma_{ij}1 = 1 \\
S6 \quad \text{If } \forall (ij) \in (n \times m) : \sigma_{ij}x = \sigma_{ij}y \text{ then } x = y
\end{align*}

Theorem 1. Every \(n \times m \)-valued Lukasiewicz algebra \(L \) may be embedded in the set \(C(L)^{(n \times m)} \).

The connections of \(n \times m \)-valued Lukasiewicz algebras and Cartesian products of ordinary Lukasiewicz algebras will be characterized by the theorems stated below.

Theorem 2. If \(L, L^1 \) are \(n \)-valued and \(m \)-valued Lukasiewicz algebras respectively then their product \(L \times L^1 \) with the endomorphisms defined by \(\sigma_{ij}(x, y) = (\sigma_i x, \sigma_j y) \) is a \(n \times m \)-valued Lukasiewicz algebra.

Theorem 3. If \(n \times m \)-valued Lukasiewicz algebra \(L \) is isomorphic with cartesian product of some two Lukasiewicz algebras \(n \)-valued and \(m \)-valued respectively, then the following condition (S6') is true:

If \(\sigma_{ii}x = \sigma_{ii}y \) and \(\sigma_{jj}x = \sigma_{jj}y \) for every \(i \in \{1, \ldots, n - 1\} \) and every \(j \in \{1, \ldots, m - 1\} \) then \(x = y \).

We define a useful congruence over \(L \). Let \(z \in C(L) \). \(x \sim y \text{ iff } x \cap z = y \cap z \).

We put \([x]_z = \{ y \in L | x \sim y \} \).

Theorem 4. \(n \times m \)-valued Lukasiewicz algebra \(L \) is isomorphic with the certain product of \(n \)-valued and \(m \)-valued algebras of Lukasiewicz iff there exists \(z \in C(L) \) such that:

1. For every \(x \in L \) and \(i \in \{1, \ldots, n - 1\} \)
 \[[\sigma_{ii}x]_z = \ldots = [\sigma_{im-1}x]_z \]

2. For every \(x \in L \) and \(j \in \{1, \ldots, m - 1\} \)
 \[[\sigma_{1j}x]_z = \ldots = [\sigma_{n-1}x]_z. \]
Now we will classify the elements occurring in the matrix Łukasiewicz algebras.

Definition 2.

A) Element \(x \) will be called
- horizontally increasing iff for each \(j \in \{1, \ldots, m-2\} \)
 \[\sigma_{n-1j}x \subset \sigma_{1j+1}x \]
- vertically increasing iff for each \(i \in \{1, \ldots, n-2\} \)
 \[\sigma_{im-1}x \subset \sigma_{i+11}x \]
- increasing iff it is both horizontally and vertically increasing

B) Element \(x \) will be called
- horizontally inversive iff there exists \(k \) such that
 \[\sigma_{1k+1}x \subset \sigma_{n-1k}x \]
- vertically inversive iff there exists \(k \) such that
 \[\sigma_{k+11}x \subset \sigma_{km-1}x \]
- inversive iff it is both horizontally and vertically inversive

C) Element \(x \) will be called
- horizontally uncomparable iff there exists \(k \) such that \(\sigma_{1k+1}x \) is uncomparable with \(\sigma_{n-1k}x \)
- vertically uncomparable iff there exists \(k \) such that \(\sigma_{k+11}x \) is uncomparable with \(\sigma_{km-1}x \)
- uncomparable iff it is both horizontally and vertically uncomparable.

Theorem 5.

a) Every vertically uncomparable element which is not horizontally uncomparable is horizontally inversive.

b) Every horizontally uncomparable element which is not vertically uncomparable is vertically inversive.

Theorem 6.

a) The set of vertically increasing elements of algebra \(L \), is closed under operations of \(L \).

b) The set of horizontally increasing elements of algebra \(L \), is closed under operations of \(L \).

c) The set of increasing elements of algebra \(L \), is closed under operations of \(L \).
Theorem 7. If L is an $n \times m$-valued Lukasiewicz algebra then the set of vertically increasing elements and the set of horizontally increasing elements are embeddable in some $[(n - 1)(m - 1) + 1]$-valued Lukasiewicz algebra.

In the class of matrix Lukasiewicz algebras, like in ordinary-Lukasiewicz algebras, the centred ones play special role.

Definition 3. In $n \times m$-valued algebra of Lukasiewicz the element c_{ij} will be called the $\langle ij \rangle$-centre of this algebra provided that

$$\sigma_{rs}c_{ij} = \begin{cases} 0 & i > r \text{ or } j > s \ \\ 1 & i \leq r \text{ and } j \leq s \end{cases}$$

Hereafter the symbol c_{ij} is reserved for $\langle ij \rangle$-centre.

Definition 4. $n \times m$-valued Lukasiewicz algebra L will be called centred iff for every pair $\langle ij \rangle \in (n \times m)$ there exists the $\langle ij \rangle$-centre of L.

Lemma. Every element x from $n \times m$-valued centred Lukasiewicz algebra may be represented as

$$\bigcup_{i=1}^{n-1} \bigcup_{j=1}^{m-1} (c_{ij} \cap \sigma_{ij}x).$$

Theorem 8. $n \times m$-valued Lukasiewicz algebra L is centred iff it is isomorphic with $C(L)^{(n \times m)}$.

The next group of noteworthy matrix Lukasiewicz algebras are square-matrix Lukasiewicz algebras. In these algebras one can introduce two new operations, one of them is negation.

Definition 5. $n \times n$-valued algebra of Lukasiewicz will be called symmetric iff for every element x the set $V^N_x \neq \emptyset$. ($V^N_x \overset{df}{=} \{ z \in L | \forall \langle rs \rangle \in (n \times n) : \sigma_{rs}z = \sigma_{n-s \ n-r}x \}).$

In such algebras one can define operation N, called negation, putting: $Nx = z$ iff $z \in V^N_x$.

Definition 6. $n \times n$-valued Lukasiewicz algebra will be called involutive iff for every its element x the set $V^S_x \neq \emptyset$. ($V^S_x \overset{df}{=} \{ z \in L | \forall \langle rs \rangle \in (n \times n) : \sigma_{rs}z = \sigma_{sr}x \}).$

In the involutive algebras one can define the operation S called symmetry putting: $Sx = z$ iff $z \in V^S_x$. Now the connections between the notions
introduced lately and the centred algebra will be explained.

Theorem 9. Every centred \(n \times n \)-valued Lukasiewicz algebra is both symmetric and involutive.

Theorem 10. Let \(n > 2 \). In each \(n \times n \)-valued symmetric Lukasiewicz algebra there is no element equal to its negation.

Definition 7. Let \(L \) be \(n \times n \)-valued Lukasiewicz involutive algebra. We put \(Z(L) = \{ y \in L | y = Sy \} \).

Lemma.

\(\alpha \) If \(Sx = Nx \) then \(x \notin Z(L) \).

\(\beta \) If \(n \) is even and \(n > 2 \) then there is no \(x \) such that \(Nx = Sx \).

Theorem 11. If \(L \) is \(n \times n \)-valued involutive Lukasiewicz algebra then \(Z(L) \) is closed under the operations \(\cup, \cap, S, \sigma_{ij} \) and when \(L \) is symmetric then \(Z(L) \) is closed under \(N \), too.

The last two theorems characterize the behaviour of the operations \(N \) and \(S \) over the sets of elements defined by Def. 2.

Theorem 12. Operation \(N \) leads elements

\(a) \) vertically increasing in horizontally increasing and conversely

\(b) \) vertically inversive in horizontally inversive and conversely

\(c) \) vertically uncomparable in horizontally uncomparable and conversely.

Theorem 13. Operation \(S \) leads elements

\(a) \) horizontally increasing in vertically increasing and conversely

\(b) \) vertically inversive in horizontally inversive and conversely

\(c) \) horizontally uncomparable in vertically uncomparable and conversely.

References

Department of Logic
Jagiellonian University
Cracow