Grzegorz Malinowski

S – ALGEBRAS FOR n-VALUED SENTENTIAL CALCULI OF ŁUKASIEWICZ

This paper was read at the Conference “Teoria logiczeskogo wywoda” in Moscow, March 1974.

1. Preliminary notions (cf. [4], [5])

Let $S = (F, C_F)$ be a propositional calculus. Let U be an algebra similar to the language F and let m be some (selected) element of the universe of U. By C_U, we will denote the consequence operation determined by the matrix $\langle U, \{m\} \rangle$. The algebra of the form U_m will be called a S-algebra provided that $C_F \subseteq C_U$.

If $S = (F, C_F)$ is the calculus of the class S (class of the standard implicative and extensional systems of sentential calculi – see [4]), then the relation \approx given by $\alpha \approx \beta$ iff $\alpha \rightarrow \beta \in C_F(\emptyset)$ and $\beta \rightarrow \alpha \in C_F(\emptyset)$ is a congruence relation on the set of all formulas F, and the quotient algebra $A(S) = F/\approx$ is partially ordered by the relation \leq defined as follows $|\alpha| \leq |\beta|$ iff $\alpha \rightarrow \beta \in C_F(\emptyset)$.

Lemma 1 (cf. [4]). The algebra $A(S)$ of the consistent system $S = (F, C_F) \in S$ is an S-algebra free in the class of all S-algebras. The element m which is forwarding in the definition of S-algebra here is equal to the maximal element of F/\approx (with respect to the order \leq defined above). The free generators of the algebra $A(S)$ are the classes determined by the sentential variables. The set of all generators will be denoted by GenA(S).
The pair $S_n = (L, C_n)$, where $L = \langle L, \to, \lor, \land, \neg \rangle$ is the well known algebra of formulas, and C_n is the consequence operation determined by Łukasiewicz’s matrix M_n will be called n-valued sentential calculus of Łukasiewicz. It can be seen (by a simple testing of the conditions defining the class S) that the following lemma is valid

Lemma 2. For every natural $n \geq 2$, $S_n \in S$.

For this reason we will use the above results concerning the class S in dealing with Łukasiewicz’s calculi.

2. **MV_n algebras**

R. S. Grigolia had introduced the notion of the MV_n algebra in [2] in the following manner

Definition (cf. [2]). We say that the algebra

$$\mathfrak{A} = \langle A, +, \cdot, - , 0, 1 \rangle,$$

where $A \neq \emptyset$, and $+, \cdot$ there are the binary operations on A; is an MV_n algebra provided that the following conditions are satisfied

G1. \mathfrak{A} is an MV algebra (see [1])

G2. $(n - 1)x + x = (n - 1)x$

$x^{n-1} \cdot x = x^{n-1}$,

where $1^0 \cdot x = 0$ and $(m+1)x = mx + x$ and $2^0 \cdot x^0 = 1$ and $x^{m+1} = (x^m) \cdot x$.

Moreover - if $n > 3$ then we add the following conditions

G3. $\{ (jx)(x + [(j - 1)x])]^{n-1} = 0$

G3. $(n - 1)\{ x^j + (x \cdot [x^{j-1}]) \} = 1$,

where $1 \leq j \leq n - 1$ and j is ranging over the set of all natural numbers not dividing $n - 1$.

Specially important examples of MV_n algebras are (simple) algebras formed on the bases of Łukasiewicz’s matrices. If $M_n = \langle A_n, \to, \lor, \land, \neg , \{1\} \rangle$ is an n-valued matrix of Łukasiewicz, then the algebra

$$\mathfrak{A}_n = \langle A_n, +, \cdot, - , 0, 1 \rangle,$$

where $x + y = \neg x \to y$, $x \cdot y = \neg(x \to \neg y)$ and $\pi = \neg x$ is an MV_n algebra.

R. S. Grigolia had obtained the representation theorem for his MV_n algebras by subdirect products. This theorem is the following
Theorem 1. (cf. [2]) Every MV_n algebra A is isomorphic with a subdirect product of the algebras A_m where $m \leq n$ and $m - 1$ is a divisor of $n - 1$.

Now let us note a lemma that will be used.

Lemma 3. For every natural $n \geq 2$, $A(S_n)$ is an MV_n-algebra.

3. Main theorem

If $n \geq 2$ is an arbitrary but fixed natural number, then by $ALG(S_n)$ we denote the class of all S-algebras for the calculus S_n (n-valued sentential calculus of Lukasiewicz) and we denote by GMV_n the whole class of MV_n algebras. We will prove the following

Theorem 2. For every natural $n \geq 2$ $ALG(S_n) = GMV_n$.

Proof. Let $n \geq 2$ be the fixed natural number. From the definition of the MV_n algebra follows that the class GMV_n is equationally definable. We then obtain (from the well known theorem of Birkhoff) that the homomorphic images of MV_n algebras are also MV_n algebras. In particular, if h is a homomorphism, then $h[A(S_n)]$ is an MV_n algebra. From the fact that $A(S_n)$ is the algebra free in the class of all S_n-algebras it follows that an arbitrary mapping of the set $GenA(S_n)$ can be extended to a homomorphism of MV_n algebras.

Now suppose that A^* is an S_n-algebra and that A^* is not an MV_n algebra. Let for some x_1, x_2, \ldots, x_n in A^* (where A^* is carrier of A^*) and some operation f that can be defined in A^*, $f(x_1, x_2, \ldots, x_n)$ does not satisfy an equational condition imposed on MV_n algebra. Let us put also

$$h^* : GenA(S_n) \rightarrow B \cup \{x_1, x_2, \ldots, x_n\},$$

where $B \cup \{x_1, x_2, \ldots, x_n\} \subseteq A^*$ and h^* is a mapping such that there exist the sentential variables p_1, p_2, \ldots, p_n for which

$$h|p_1| = x_1$$
$$h|p_2| = x_2$$
$$\ldots \ldots \ldots$$
$$h|p_n| = x_n$$
Then one can prove that the mapping h^* cannot be extended to the homomorphism of MV_n algebras. We obtain the contradiction with Lemma 1 concluding the proof.

Additional Remark. At 1973 were independently introduced two notions of the MV_n algebras (Loosely speaking these are MV algebras corresponding to the finite valued sentential calculi of Łukasiewicz). One of them was introduced by R. S. Grigolia (see [2]) and the other by G. Malinowski (see [3]). The ways in which these two notions were defined there are somewhat different (although these notions are similar). The comparison of the above two kinds of algebras will be given elsewhere. Let us emphasis that in the present paper we have considered only MV_n algebras in the sense of R. S. Grigolia.

References

