Jerzy Kotas

THE AXIOMATIZATION OF S. JAŚKOWSKI’S DISCUSSIVE SYSTEM

S. Jaśkowski in [2] and [3] has determined through interpretation a new logical system D_2, very interesting in many respects, which he has called a discussive system. L. Dubikajtis and N. C. A. da Costa in [1] gave an infinite axiom set for that system. The present paper aims at demonstrating that D_2 is a finitely axiomatizable. We shall make use of the Łukasiewicz bracketless notation. The symbols K, A, C, N, M and L will denote conjunction, disjunction, material implication, negation, possibility, and necessity, respectively. Logical systems will be treated as the sets of formulae.

In determining the system D_2 Jaśkowski employs the modal system S_5 of Lewis. He enriches the set of logical connectives of the system S_5 with three additional connectives K_d, C_d, and E_d which he calls discussive conjunction, discussive implication, and discussive equivalence, respectively. These logical connectives he defines as follows:

Definition 1. $K_d pq = df KpMq$;

Definition 2. $C_d pq = df CMpq$;

Definition 3. $E_d pq = df KdCdpqCdqp$.

The system D_2 is the least set of formulae α fulfilling the following conditions:

1. There are present in α only the signs of propositional variables and the signs K_d, C_d, E_d, A and N;

2. The expression $M\alpha_L$, where α_L is the expression obtained from α by eliminating the symbols K_d, C_d, E_d, according to their definitions.
Let the symbols LS_5 and $M - S_5$ denote, respectively, the set of all those theses of the system S_5 at the beginning of which there is the symbol L, and the set of all formulae of the system S_5 which after being preceded by the sign M become theses of the system S_5. Since we treat the logical systems as sets of formulae, LS_5 and $M - S_5$ are certain logical systems. Making use of C, N and L it is possible to define in a well known way all remaining logical connectives of the system S_5; thus considering the systems S_5, LS_5 and $M - S_5$ we can confine ourselves to the set of formulae where, apart from variables, there are only the signs C, N and L. For the same reason we may put that K_d, C_d, A, N are the only signs of the logical connectives occurring in the formulae of the system D_2.

Let A be the set consisting of the following formulae:

\[(A_1) \quad LCpCNpq,\]
\[(A_2) \quad LCCpqCCqrCpr,\]
\[(A_3) \quad LCCNppp,\]
\[(A_4) \quad LCNp,\]
\[(A_5) \quad LCNCpqCLpLq,\]
\[(A_6) \quad LCNpLNLp.\]

In further considerations we shall employ the following rules of deduction:

\[(R_1) : \text{substitution rule;}\]
\[(R_2) : \text{if } L\alpha, \text{ and } LC\alpha\beta, \text{ then } L\beta;\]
\[(R_3) : \text{if } \alpha, \text{ then } L\alpha;\]
\[(R_4) : \text{if } L\alpha, \text{ then } \alpha;\]
\[(R_5) : \text{if } N LN\alpha, \text{ then } \alpha.\]

The symbol $Cn(A; R_1, \ldots, R_n)$ denote the set of all formulae which are the consequences of the set A with respect to the rules of deduction $(R_1), \ldots, (R_n)$.

Lemma 1. $Cn(A; R_1, R_2, R_3) = LS_5$.

Lemma 2. $Cn(A; R_1, R_2, R_3, R_4) = S_5$.

Lemma 3. $Cn(A; R_1, R_2, R_3, R_4, R_5) = M - S_5$.
Since from $C\alpha\beta \in M - S5$ and $C\beta\alpha \in M - S5$ it does not follow that $CN\alpha N\beta \in M - S5$, then it does not follow that $CN\alpha N\beta \in M - S5$ the implication as meant in [4]. For the same reasons C_d is not an implication as meant above, in the system D_2. It is easy to prove that the strict implication, denoted here by the symbol C_S, as well as the logical connective I which is defined in the following way:

Definition 4. $Ipq \equiv_d NK_dANrRNANpq$ are implications in the system $M - S5$ and D_2, respectively, in the sense as determined in [4].

The interpretation i_1 of the system D_2 in the system $M - S5$, and the interpretation i_2 of the system $M - S5$ in the system D_2 we determine in the following way:

I. For any formulae α and β of the system D_2:
 i) $i_1(\alpha) = \alpha$, when α is a propositional variable,
 ii) $i_1(N\alpha) = Ni_1(\alpha)i_1(\beta)$,
 iii) $i_1(A\alpha\beta) = CNi_1(\alpha)i_1(\beta)$,
 iv) $i_1(K_d\alpha\beta) = Nan_i_1(\alpha)LNi_1(\beta)$,
 v) $i_1(C_d\alpha\beta) = CNLN_i_1(\alpha)i_1(\beta)$;

II. For any formulae α and β of the system $M - S5$:
 i) $i_2(\alpha) = \alpha$ when α is a propositional variable,
 ii) $i_2(N\alpha) = Ni_2(\alpha)$,
 iii) $i_2(C\alpha\beta) = A\alpha_i_2(\alpha)i_2(\beta)$,
 iv) $i_2(L\alpha) = NK_dANpN\alpha_i_2(\alpha)$.

Lemma 4. $\gamma Cs i_1(Ipq)CSpq \cap \gamma C_S CSpqi_1(Ipq) \cap \gamma \in M - S5$.

Lemma 5. $\gamma Ii_2(CSpq)Ipq \cap \gamma IIPqi_2(CSpq) \cap \gamma \in D_2$.

From the Lemmas 4 and 5 it follows that the interpretation i_1 turns the implication I in the strict implication C_S, and the interpretation i_2 turns the implication C_S in I.

Lemma 6. The interpretations i_1 and i_2 establish the equivalence of the systems D_2 and $M - S5$.

Because D_2 and $M - S5$ are equivalent systems, from the notes at the end of [4], from Theorem 4 put in [5], p. 361, and from Lemmas 3 and 6 it follows
Theorem. D_2 is a finitely axiomatizable system.

In the above mentioned Theorem 4 of [5] a method is given which effectively enables to obtain the axioms of a logical system if the axioms of the equivalent logical system are known. Making use of that method we obtain the following

Corollary. The formulae $i_2(A_i)$, $i = 1, \ldots, 6$, $i_2i_1(Fpq)Fpq$, $IFpq_i_1(Fpq)$, where instead of the symbol F, symbols K_d, C_d, A should be put in turn, and the rules (R_i, i_2), $i = 1, 2, 3, 4, 5$, connected through the interpretation i_2 with the rules (R_i), $i = 1, 2, 3, 4, 5$, constitute the complete axiom set of the system D_2.

References

Institute of Mathematics
Nicholas Copernicus University
Toruń